【題目】如圖,在四邊形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.若AB=3cm,BC=5cm,點PB點出發(fā),以1cm/s的速度沿BC→CD→DA運動至A點停止,則從運動開始經(jīng)過多少時間,△ABP為等腰三角形?

備用圖1

備用圖2 備用圖3

【答案】當(dāng)點P運動3、2.5、、10秒時,△APE是等腰三角形

【解析】

利用AAS先證明ABC≌△CDA,可得AD=BC,AB=CD;利用勾股定理先求得AC的長,再根據(jù)點PBC上,點PCD上,點PAD上三種情況,結(jié)合等腰三角形的判定和勾股定理進行計算即可.

設(shè)點P運動的時間為t ,

ABCCDB中,

BAC=ACD,B=D,AC=CA,

∴△ABC≌△CDB(AAS),

AD=BC,AB=CD,

RtABC中,∠BAC=90°,AC===4.

設(shè)經(jīng)過ts時,ABP為等腰三角形.

當(dāng)PBC上時,

BA=BP=3,即t=3時,ABP為等腰三角形;

BP=AP=BC=,即t=時,ABP為等腰三角形;

AB=AP時,如圖:

AAEBC,垂足為E,AE=,

RtABE中,BE===

BP=2BE=

t=時,ABP為等腰三角形;

當(dāng)PCD上不能得出等腰三角形;

當(dāng)PAD上時,只能AB=AP=3,

BC+CD+DP=10,即t=10時,ABP為等腰三角形.

答:從運動開始經(jīng)過2.5s3ss10s時,ABP為等腰三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,將△ABC繞著點A逆時針旋轉(zhuǎn)得到△ADE,點C落在邊AD上,連接BD.若∠DAE=α,則用含α的式子表示∠CBD的大小是(

A.α
B.90°﹣α
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知△ABC與△CDA關(guān)于點O對稱,過O任作直線EF分別交AD,BC于點E,F(xiàn),下面的結(jié)論:
①點E和點F,點B和點D是關(guān)于中心O對稱點;
②直線BD必經(jīng)過點O;
③四邊形DEOC與四邊形BFOA的面積必相等;
④△AOE與△COF成中心對稱.
其中正確的個數(shù)為(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在下列條件中,不能證明ABD≌△ACD的是( ).

A.BD=DC, AB=AC B.ADB=ADC,BD=DC

C.B=C,BAD=CAD D. B=C,BD=DC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AC=6,BC=8,AB=10

(1)尺規(guī)作圖:作AD平分∠CAB,交BC于點D;

(2)求CD的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知E是矩形ABCD的邊CD上一點,BF⊥AE于F,試說明:△ABF∽△EAD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】認真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾角的探究片段,完成所提出的問題:

(1)已知,如圖1,ABC中,P點是∠ABC和∠ACB的角平分線的交點,求證:∠P=A+90°。

(2)如圖2,若P點是∠ABC和∠ACB外角的角平分線的交點,∠A=80°,那么∠P=____°;

(3)如圖3,ABC中,若P點是∠ABC外角和∠ACB外角的角平分線的交點,∠A=,那么∠P=________(請用含的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有這樣一個問題:探究函數(shù)y= x2+ 的圖象與性質(zhì).
小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y= x2+ 的圖象與性質(zhì)進行了探究.
下面是小東的探究過程,請補充完整:
(1)函數(shù)y= x2+ 的自變量x的取值范圍是
(2)下表是y與x的幾組對應(yīng)值.

x

﹣3

﹣2

﹣1

1

2

3

y

m

求m的值;
(3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點.根據(jù)描出的點,畫出該函數(shù)的圖象;

(4)進一步探究發(fā)現(xiàn),該函數(shù)圖象在第一象限內(nèi)的最低點的坐標(biāo)是(1, ),結(jié)合函數(shù)的圖象,寫出該函數(shù)的其它性質(zhì)(一條即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)是某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀.拋物線兩端點與水面的距離都是1m,拱橋的跨度為10cm.橋洞與水面的最大距離是5m.橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈.現(xiàn)把拱橋的截面圖放在平面直角坐標(biāo)系中,如圖(2).求:

(1)拋物線的解析式;
(2)兩盞景觀燈P1、P2之間的水平距離.

查看答案和解析>>

同步練習(xí)冊答案