【題目】甲、乙兩名同學(xué)進(jìn)行登山比賽,圖中表示甲同學(xué)和乙同學(xué)沿相同的路線同時(shí)從山腳出發(fā)到達(dá)山頂過程中,各自行進(jìn)的路程隨時(shí)間變化的圖象,根據(jù)圖象中的有關(guān)數(shù)據(jù)回答下列問題:

1)分別求出表示甲、乙兩同學(xué)登山過程中路程(千米)與時(shí)間(時(shí))的函數(shù)解析式;(不要求寫出自變量的取值范圍)

2)當(dāng)甲到達(dá)山頂時(shí),乙行進(jìn)到山路上的某點(diǎn)處,求點(diǎn)距山頂?shù)木嚯x;

3)在(2)的條件下,設(shè)乙同學(xué)從處繼續(xù)登山,甲同學(xué)到達(dá)山頂后休息1小時(shí),沿原路下山,在點(diǎn)處與乙相遇,此時(shí)點(diǎn)與山頂距離為1.5千米,相遇后甲、乙各自按原來的路線下山和上山,求乙到達(dá)山頂時(shí),甲離山腳的距離是多少千米?

【答案】1S3t,S2t;(24千米;(3)甲距山腳6千米.

【解析】

1)由圖可知,甲、乙兩同學(xué)登山過程中路程s與時(shí)間t都成正比例函數(shù),分別設(shè)為Sk1t,Sk2t,用待定系數(shù)法可求解;

2)由圖可知,甲到達(dá)山頂時(shí)路程為12千米,即山腳到山頂?shù)木嚯x為12千米,代入S可求得所花的時(shí)間,再把時(shí)間代入S即可求得A點(diǎn)離山腳的距離,則A點(diǎn)與山頂?shù)木嚯x可求;

3)由圖象知:甲到達(dá)山頂并休息1小時(shí)后點(diǎn)D的坐標(biāo)為(5,12),點(diǎn)B的坐標(biāo)也可求,則線段DF所在直線的一次函數(shù)表達(dá)式可求,而乙到達(dá)山頂?shù)臅r(shí)間可求,則題目可求解.

解:(1)設(shè)甲、乙兩同學(xué)登山過程中,路程s(千米)與時(shí)間t(時(shí))的函數(shù)解析式分別為

Sk1t,Sk2t

由題意,得62k1,63k2

k13,k22

∴解析式分別為S3t,S2t;

2)甲到達(dá)山頂時(shí),由圖象可知,當(dāng)S12千米,代入S3tt4(小時(shí))

S2×48(千米)

1284(千米)

答:當(dāng)甲到達(dá)山頂時(shí),乙距山頂?shù)木嚯x為4千米.

3)由圖象知:甲到達(dá)山頂并休息1小時(shí)后點(diǎn)D的坐標(biāo)為(512

由題意,得:點(diǎn)B的縱坐標(biāo)為12,代入S2t,

解得:t,

∴點(diǎn)B,

設(shè)過B、D兩點(diǎn)的直線解析式為Sktb,

由題意,得:,

解得,

∴直線BD的解析式為S6t42

當(dāng)乙到達(dá)山頂時(shí),S12,得t6,把t6代入S6t42S6(千米).

答:乙到達(dá)山頂時(shí),甲距山腳6千米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線,經(jīng)過A1,0)、B70)兩點(diǎn),交y軸于D點(diǎn),以AB為邊在x軸上方作等邊△ABC

1)求拋物線的解析式;

2)在x軸上方的拋物線上是否存在點(diǎn)M,是SABM=SABC?若存在,請求出點(diǎn)M的坐標(biāo);若不存在,請說明理由;

3)如圖2,E是線段AC上的動(dòng)點(diǎn),F是線段BC上的動(dòng)點(diǎn),AFBE相交于點(diǎn)P

①若CE=BF,試猜想AFBE的數(shù)量關(guān)系及∠APB的度數(shù),并說明理由;

②若AF=BE,當(dāng)點(diǎn)EA運(yùn)動(dòng)到C時(shí),請直接寫出點(diǎn)P經(jīng)過的路徑長(不需要寫過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿GH對折,點(diǎn)C落在Q處,點(diǎn)D落在AB邊上E處,EQBC相交于F,若AD8 cm,AB6 cm,AE4cm,則EBF的周長是______________ cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰Rt△ABC中,BA=BC,∠ABC=90°,點(diǎn)D在AC上,將△ABD繞點(diǎn)B沿順時(shí)針方向旋轉(zhuǎn)90°后,得到△CBE.

(1)求∠DCE的度數(shù);

(2)若AB=4,CD=3AD,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售、兩種品牌的洗衣機(jī),進(jìn)價(jià)及售價(jià)如下表:

品牌

進(jìn)價(jià)(元/臺)

1500

1800

售價(jià)(元/臺)

1800

2200

1)該商場9月份用45000元購進(jìn)、兩種品牌的洗衣機(jī),全部售完后獲利9600元,求商場9月份購進(jìn)、兩種洗衣機(jī)的數(shù)量;

2)該商場10月份又購進(jìn)、兩種品牌的洗衣機(jī)共用去36000

①問該商場共有幾種進(jìn)貨方案?請你把所有方案列出來;

②通過計(jì)算說明洗衣機(jī)全部銷售完后哪種進(jìn)貨方案所獲得的利潤最大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算;

123_____;

2)﹣2+|2|_____;

3)﹣(﹣16)=_____;

4_____;

52a+a_____;

6_____;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,在數(shù)軸上,點(diǎn)M,N分別表示數(shù)m,n則點(diǎn)M,N之間的距離為|mn|.已知點(diǎn)A,B,C,D在數(shù)軸上分別表示數(shù)a,b,c,d,且|ac||bc||da|1ab),則線段BD的長度為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線:y=ax2+bx+c(a<0)經(jīng)過A(2,4)、B(﹣1,1)兩點(diǎn),頂點(diǎn)坐標(biāo)為(h,k),則下列正確結(jié)論的序號是( 。

①b>1;②c>2;③h>;④k≤1.

A. ①②③④ B. ①②③ C. ①②④ D. ②③④

查看答案和解析>>

同步練習(xí)冊答案