【題目】如圖,已知直線與拋物線: 相交于和點(diǎn)兩點(diǎn).
⑴求拋物線的函數(shù)表達(dá)式;
⑵若點(diǎn)是位于直線上方拋物線上的一動點(diǎn),以為相鄰兩邊作平行四邊形,當(dāng)平行四邊形的面積最大時,求此時四邊形的面積及點(diǎn)的坐標(biāo);
⑶在拋物線的對稱軸上是否存在定點(diǎn),使拋物線上任意一點(diǎn)到點(diǎn)的距離等于到直線的距離,若存在,求出定點(diǎn)的坐標(biāo);若不存在,請說明理由.
【答案】⑴;⑵當(dāng) ,□MANB=△= ,此時;⑶存在. 當(dāng)時,無論取任何實(shí)數(shù),均有. 理由見解析.
【解析】
(1)利用待定系數(shù)法,將A,B的坐標(biāo)代入y=ax2+2x+c即可求得二次函數(shù)的解析式;
(2)過點(diǎn)M作MH⊥x軸于H,交直線AB于K,求出直線AB的解析式,設(shè)點(diǎn)M(a,-a2+2a+3),則K(a,a+1),利用函數(shù)思想求出MK的最大值,再求出△AMB面積的最大值,可推出此時平行四邊形MANB的面積S及點(diǎn)M的坐標(biāo);
(3)如圖2,分別過點(diǎn)B,C作直線y=的垂線,垂足為N,H,設(shè)拋物線對稱軸上存在點(diǎn)F,使拋物線C上任意一點(diǎn)P到點(diǎn)F的距離等于到直線y=的距離,其中F(1,a),連接BF,CF,則可根據(jù)BF=BN,CF=CN兩組等量關(guān)系列出關(guān)于a的方程組,解方程組即可.
(1)由題意把點(diǎn)(-1,0)、(2,3)代入y=ax2+2x+c,
得,,
解得a=-1,c=3,
∴此拋物線C函數(shù)表達(dá)式為:y=-x2+2x+3;
(2)如圖1,過點(diǎn)M作MH⊥x軸于H,交直線AB于K,
將點(diǎn)(-1,0)、(2,3)代入y=kx+b中,
得,,
解得,k=1,b=1,
∴yAB=x+1,
設(shè)點(diǎn)M(a,-a2+2a+3),則K(a,a+1),
則MK=-a2+2a+3-(a+1)
=-(a-)2+,
根據(jù)二次函數(shù)的性質(zhì)可知,當(dāng)a=時,MK有最大長度,
∴S△AMB最大=S△AMK+S△BMK
=MKAH+MK(xB-xH)
=MK(xB-xA)
=××3
=,
∴以MA、MB為相鄰的兩邊作平行四邊形MANB,當(dāng)平行四邊形MANB的面積最大時,
S最大=2S△AMB最大=2×=,M(,);
(3)存在點(diǎn)F,
∵y=-x2+2x+3
=-(x-1)2+4,
∴對稱軸為直線x=1,
當(dāng)y=0時,x1=-1,x2=3,
∴拋物線與點(diǎn)x軸正半軸交于點(diǎn)C(3,0),
如圖2,分別過點(diǎn)B,C作直線y=的垂線,垂足為N,H,
拋物線對稱軸上存在點(diǎn)F,使拋物線C上任意一點(diǎn)P到點(diǎn)F的距離等于到直線y=的距離,設(shè)F(1,a),連接BF,CF,
則BF=BN=-3=,CF=CH=,
由題意可列:,
解得,a=,
∴F(1,).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為⊙的內(nèi)接三角形,為⊙的直徑,在線段上取點(diǎn)(不與端點(diǎn)重合),作,分別交、圓周于、,連接,已知.
(1)求證:為⊙的切線;
(2)已知,填空:
①當(dāng)__________時,四邊形是菱形;
②若,當(dāng)__________時,為等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的半徑是4,點(diǎn)A,B,C在⊙O上,若四邊形OABC為菱形,則圖中陰影部分面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是由若干個小圓圈堆成的一個形如等邊三角形的圖案,最上面一層有一個圓圈,以下各層均比上一層多一個圓圈,一共堆了n層.將圖1倒置后與原圖1拼成圖2的形狀,這樣我們可以算出圖1中所有圓圈的個數(shù)為.
如果圖中的圓圈共有13層,請問:自上往下,在每個圓圈中按圖3的方式填上一串連續(xù)的正整數(shù)1,2,3,4,……,則最底層最左邊這個圓圈中的數(shù)是__________;自上往下,在每個圓圈中按圖4的方式填上一串連續(xù)的整數(shù)﹣23,﹣22,﹣21,﹣20,……,則所有圓圈中各數(shù)的絕對值之和為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,以點(diǎn)為圓心,以長為半徑畫弧,交直線于點(diǎn),過點(diǎn)作軸,交直線于點(diǎn),以為圓心,以長為半徑畫弧,交直線于點(diǎn),過點(diǎn)作軸,交直線于點(diǎn),以點(diǎn)為圓心,以長為半徑畫弧,交直線于點(diǎn),過點(diǎn)作軸交直線于點(diǎn),以點(diǎn)為圓心,以長為半徑面弧,交直線于點(diǎn),…,按照如此規(guī)律進(jìn)行下去,點(diǎn)的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c的對稱軸是直線x=﹣2.拋物線與x軸的一個交點(diǎn)在點(diǎn)(﹣4,0)和點(diǎn)(﹣3,0)之間,其部分圖象如圖所示,下列結(jié)論中正確的個數(shù)有( )①4a﹣b=0;②c≤3a;③關(guān)于x的方程ax2+bx+c=2有兩個不相等實(shí)數(shù)根;④b2+2b>4ac.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為4的正方形中,點(diǎn)為對角線上一動點(diǎn)(點(diǎn)與點(diǎn)、不重合),連接,作交射線于點(diǎn),過點(diǎn)作分別交,于點(diǎn)、,作射線交射線于點(diǎn)
(1)求證:;
(2)當(dāng)時,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了測量一條兩岸平行的河流寬度,三個數(shù)學(xué)研究小組設(shè)計(jì)了不同的方案,他們在河南岸的點(diǎn)A處測得河北岸的樹H恰好在A的正北方向.測量方案與數(shù)據(jù)如下表:
課題 | 測量河流寬度 | ||
測量工具 | 測量角度的儀器,皮尺等 | ||
測量小組 | 第一小組 | 第二小組 | 第三小組 |
測量方案示意圖 | |||
說明 | 點(diǎn)B,C在點(diǎn)A的正東方向 | 點(diǎn)B,D在點(diǎn)A的正東方向 | 點(diǎn)B在點(diǎn)A的正東方向,點(diǎn)C在點(diǎn)A的正西方向. |
測量數(shù)據(jù) | BC=60m, ∠ABH=70°, ∠ACH=35°. | BD=20m, ∠ABH=70°, ∠BCD=35°. | BC=101m, ∠ABH=70°, ∠ACH=35°. |
(1)哪個小組的數(shù)據(jù)無法計(jì)算出河寬?
(2)請選擇其中一個方案及其數(shù)據(jù)求出河寬(精確到0.1m).(參考數(shù)據(jù):sin70°≈0.94,sin35°≈0.57,tan70°≈2.75,tan35°≈0.70)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組建了書法、音樂、美術(shù)、舞蹈、演講5個社團(tuán),隨機(jī)調(diào)查了部分學(xué)生.被調(diào)查學(xué)生每人都參加且只參加了其中一個社團(tuán)活動,并將調(diào)查結(jié)果制成了如圖兩幅不完整的統(tǒng)計(jì)圖,在扇形統(tǒng)計(jì)圖中,“音樂”所對應(yīng)的扇形圓心角度數(shù)是( )度.
A.25%B.25C.60D.90
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com