【題目】如圖,在邊長(zhǎng)為4的正方形中,點(diǎn)為對(duì)角線上一動(dòng)點(diǎn)(點(diǎn)與點(diǎn)、不重合),連接,作交射線于點(diǎn),過點(diǎn)作分別交,于點(diǎn)、,作射線交射線于點(diǎn)
(1)求證:;
(2)當(dāng)時(shí),求的長(zhǎng).
【答案】(1)見解析;(2)GE的長(zhǎng)為,
【解析】
(1)要證明EF=DE,只要證明△DME≌△ENF即可,然后根據(jù)題目中的條件和正方形的性質(zhì),可以得到△DME≌△ENF的條件,從而可以證明結(jié)論成立;
(2)分兩種情況:①當(dāng)點(diǎn)F在線段AB上時(shí),②當(dāng)點(diǎn)F在BA的延長(zhǎng)線上時(shí);均可根據(jù)勾股定理和三角形相似,可以得到AG和CG、CE的長(zhǎng),然后即可得到GE的長(zhǎng).
(1)證明:∵四邊形ABCD是正方形,AC是對(duì)角線,
∴∠ECM=45°,
∵MN∥BC,∠BCM=90°,
∴∠NMC+∠BCM=180°,∠MNB+∠B=180°,
∴∠NMC=90°,∠MNB=90°,
∴∠MEC=∠MCE=45°,∠DME=∠ENF=90°,
∴MC=ME,
∵CD=MN,
∴DM=EN,
∵DE⊥EF,∠EDM+∠DEM=90°,
∵∠DEF=90°,
∴∠DEM+∠FEN=90°,
∴∠EDM=∠FEN,
在△DME和△ENF中
,
∴△DME≌△ENF(ASA),
∴
(2)如圖1所示,由(1)知,△DME≌△ENF,
∴ME=NF,
∵四邊形MNBC是矩形,
∴MC=BN,
又∵ME=MC,AB=4,AF=2,
∴BN=MC=NF=1,
∵∠EMC=90°,
∴CE=,
∵AF∥CD,
∴△DGC∽△FGA,
∴,
∴,
∵AB=BC=4,∠B=90°,
∴AC=4,
∵AC=AG+GC,
∴AG=,CG=,
∴GE=GCCE=-=;
如圖2所示,
同理可得,FN=BN,
∵AF=2,AB=4,
∴AN=1,
∵AB=BC=4,∠B=90°,
∴AC=4,
∵AF∥CD,
∴△GAF∽△GCD,
∴,
即,
解得,AG=4,
∵AN=NE=1,∠ENA=90°,
∴AE=,
∴GE=GA+AE=5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形中,是一條對(duì)角線,點(diǎn)在直線上(不與點(diǎn)、重合),連接,平移,使點(diǎn)移動(dòng)到點(diǎn),得到,過點(diǎn)作于,連接,.
(問題發(fā)現(xiàn))
(1)如圖①,若點(diǎn)在線段上,與的數(shù)量關(guān)系是________,位置關(guān)系是________.
(拓展探究)
(2)如圖②,若點(diǎn)在線段的延長(zhǎng)線上,其他條件不變,(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明,否則說明理由.
(解決問題)
(3)若點(diǎn)在線段的延長(zhǎng)線上,且,正方形的邊長(zhǎng)為2,請(qǐng)直接寫出求的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸交于點(diǎn),對(duì)稱軸為直線,,下列結(jié)論:①;②9a+3b+c=0;③若點(diǎn),點(diǎn)是此函數(shù)圖象上的兩點(diǎn),則;④.其中正確的個(gè)數(shù)( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與拋物線: 相交于和點(diǎn)兩點(diǎn).
⑴求拋物線的函數(shù)表達(dá)式;
⑵若點(diǎn)是位于直線上方拋物線上的一動(dòng)點(diǎn),以為相鄰兩邊作平行四邊形,當(dāng)平行四邊形的面積最大時(shí),求此時(shí)四邊形的面積及點(diǎn)的坐標(biāo);
⑶在拋物線的對(duì)稱軸上是否存在定點(diǎn),使拋物線上任意一點(diǎn)到點(diǎn)的距離等于到直線的距離,若存在,求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的外接圓,,于點(diǎn),延長(zhǎng)交于點(diǎn),若,,則的長(zhǎng)是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格圖形中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),頂點(diǎn)都是格點(diǎn)的三角形稱為格點(diǎn)三角形.如圖,已知Rt△ABC是6×6網(wǎng)格圖形中的格點(diǎn)三角形,則該圖中所有與Rt△ABC相似的格點(diǎn)三角形中.面積最大的三角形的斜邊長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC=2,BC=8,按下列步驟作圖:
①以點(diǎn)A為圓心,適當(dāng)?shù)拈L(zhǎng)度為半徑作弧,分別交AB,AC于點(diǎn)E,F,再分別以點(diǎn)E,F為圓心,大于EF的長(zhǎng)為半徑作弧相交于點(diǎn)H,作射線AH;
②分別以點(diǎn)A,B為圓心,大于AB的長(zhǎng)為半徑作弧相交于點(diǎn)M,N,作直線MN,交射線AH于點(diǎn)O;
③以點(diǎn)O為圓心,線段OA長(zhǎng)為半徑作圓.
則⊙O的半徑為( 。
A.2B.10C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角三角形中,,一個(gè)三角尺的直角頂點(diǎn)與邊的中點(diǎn)重合,且兩條直角邊分別經(jīng)過點(diǎn)和點(diǎn),將三角尺繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)任意一個(gè)銳角,當(dāng)三角尺的兩直角邊與,分別交于點(diǎn),時(shí),下列結(jié)論中錯(cuò)誤的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按要求作圖,不要求寫作法,但要保留作圖痕跡.
(1)如圖1,矩形ABCD的頂點(diǎn)A、D在圓上, B、C兩點(diǎn)在圓內(nèi),已知圓心O,請(qǐng)僅用無刻度的直尺作圖,請(qǐng)作出直線l⊥AD;
(2)請(qǐng)僅用無刻度的直尺在下列圖2和圖3中按要求作圖.(補(bǔ)上所作圖形頂點(diǎn)字母)
①圖2是矩形ABCD,E,F分別是AB和AD的中點(diǎn),以EF為邊作一個(gè)菱形;
②圖3是矩形ABCD,E是對(duì)角線BD上任意一點(diǎn)(BE>DE),以AE為邊作一個(gè)平行四邊形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com