某超市計(jì)劃上兩個(gè)新項(xiàng)目:
項(xiàng)目一:銷售A種商品,所獲得利潤(rùn)y(萬元)與投資金額x(萬元)之間存在正比例函數(shù)關(guān)系:y=kx.當(dāng)投資5萬元時(shí),可獲得利潤(rùn)2萬元;
項(xiàng)目二:銷售B種商品,所獲得利潤(rùn)y(萬元)與投資金額x(萬元)之間存在二次函數(shù)關(guān)系:y=ax2+bx.當(dāng)投資4萬元時(shí),可獲得利潤(rùn)3.2萬元;當(dāng)投資2萬元時(shí),可獲得利潤(rùn)2.4萬元.
(1)請(qǐng)分別求出上述的正比例函數(shù)表達(dá)式和二次函數(shù)表達(dá)式;
(2)如果超市同時(shí)對(duì)A、B兩種商品共投資12萬元,請(qǐng)你設(shè)計(jì)一個(gè)能獲得最大利潤(rùn)的投資方案,并求出按此方案獲得的最大利潤(rùn)是多少?
【答案】分析:(1)首先利用已知條件和待定系數(shù)法可以分別求出正比例函數(shù)表達(dá)式和二次函數(shù)表達(dá)式;
(2)設(shè)投資B種商品x萬元,則投資A種商品(12-x)萬元,然后根據(jù)已知條件可以列出利潤(rùn)W關(guān)于x的二次函數(shù),接著利用二次函數(shù)的性質(zhì)即可求出獲得最大利潤(rùn)的投資方案.
解答:解:(1)∵銷售A種商品,所獲得利潤(rùn)y(萬元)與投資金額x(萬元)之間存在正比例函數(shù)關(guān)系:y=kx.
當(dāng)投資5萬元時(shí),可獲得利潤(rùn)2萬元;
∴yA=0.4x;
∵銷售B種商品,所獲得利潤(rùn)y(萬元)與投資金額x(萬元)之間存在二次函數(shù)關(guān)系:y=ax2+bx.
當(dāng)投資4萬元時(shí),可獲得利潤(rùn)3.2萬元;
當(dāng)投資2萬元時(shí),可獲得利潤(rùn)2.4萬元.
,
∴a=-0.2,b=1.6,
∴yB=-0.2x2+1.6x;
(2)設(shè)投資B種商品x萬元,
則投資A種商品(12-x)萬元.
W=-0.2x2+1.6x+0.4(12-x)
=-0.2(x-3)2+6.6.
∴當(dāng)x=3時(shí),W取最大值,
∴投資A、B兩種商品分別為9、3萬元可獲得最大利潤(rùn)6.6萬元.
點(diǎn)評(píng):此題主要考查了二次函數(shù)的應(yīng)用,解題的關(guān)鍵是正確把握題目的數(shù)量關(guān)系,然后根據(jù)數(shù)量關(guān)系列出函數(shù)關(guān)系式,利用函數(shù)關(guān)系式即可解決問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

某超市計(jì)劃上兩個(gè)新項(xiàng)目:
項(xiàng)目一:銷售A種商品,所獲得利潤(rùn)y(萬元)與投資金額x(萬元)之間存在正比例函數(shù)關(guān)系:y=kx.當(dāng)投資5萬元時(shí),可獲得利潤(rùn)2萬元;
項(xiàng)目二:銷售B種商品,所獲得利潤(rùn)y(萬元)與投資金額x(萬元)之間存在二次函數(shù)關(guān)系:y=ax2+bx.當(dāng)投資4萬元時(shí),可獲得利潤(rùn)3.2萬元;當(dāng)投資2萬元時(shí),可獲得利潤(rùn)2.4萬元.
(1)請(qǐng)分別求出上述的正比例函數(shù)表達(dá)式和二次函數(shù)表達(dá)式;
(2)如果超市同時(shí)對(duì)A、B兩種商品共投資12萬元,請(qǐng)你設(shè)計(jì)一個(gè)能獲得最大利潤(rùn)的投資方案,并求出按此方案獲得的最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年福建省三明市明溪縣初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題

某超市計(jì)劃上兩個(gè)新項(xiàng)目:
項(xiàng)目一:銷售A種商品,所獲得利潤(rùn)y(萬元)與投資金額x(萬元)之間存在正比例函數(shù)關(guān)系:y=kx.當(dāng)投資5萬元時(shí),可獲得利潤(rùn)2萬元;
項(xiàng)目二:銷售B種商品,所獲得利潤(rùn)y(萬元)與投資金額x(萬元)之間存在二次函數(shù)關(guān)系:y=ax2+bx.當(dāng)投資4萬元時(shí),可獲得利潤(rùn)3.2萬元;當(dāng)投資2萬元時(shí),可獲得利潤(rùn)2.4萬元.
(1)請(qǐng)分別求出上述的正比例函數(shù)表達(dá)式和二次函數(shù)表達(dá)式;
(2)如果超市同時(shí)對(duì)A、B兩種商品共投資12萬元,請(qǐng)你設(shè)計(jì)一個(gè)能獲得最大利潤(rùn)的投資方案,并求出按此方案獲得的最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年河南省中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

某超市計(jì)劃上兩個(gè)新項(xiàng)目:
項(xiàng)目一:銷售A種商品,所獲得利潤(rùn)y(萬元)與投資金額x(萬元)之間存在正比例函數(shù)關(guān)系:y=kx.當(dāng)投資5萬元時(shí),可獲得利潤(rùn)2萬元;
項(xiàng)目二:銷售B種商品,所獲得利潤(rùn)y(萬元)與投資金額x(萬元)之間存在二次函數(shù)關(guān)系:y=ax2+bx.當(dāng)投資4萬元時(shí),可獲得利潤(rùn)3.2萬元;當(dāng)投資2萬元時(shí),可獲得利潤(rùn)2.4萬元.
(1)請(qǐng)分別求出上述的正比例函數(shù)表達(dá)式和二次函數(shù)表達(dá)式;
(2)如果超市同時(shí)對(duì)A、B兩種商品共投資12萬元,請(qǐng)你設(shè)計(jì)一個(gè)能獲得最大利潤(rùn)的投資方案,并求出按此方案獲得的最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年4月中考數(shù)學(xué)模擬試卷(2)(解析版) 題型:解答題

某超市計(jì)劃上兩個(gè)新項(xiàng)目:
項(xiàng)目一:銷售A種商品,所獲得利潤(rùn)y(萬元)與投資金額x(萬元)之間存在正比例函數(shù)關(guān)系:y=kx.當(dāng)投資5萬元時(shí),可獲得利潤(rùn)2萬元;
項(xiàng)目二:銷售B種商品,所獲得利潤(rùn)y(萬元)與投資金額x(萬元)之間存在二次函數(shù)關(guān)系:y=ax2+bx.當(dāng)投資4萬元時(shí),可獲得利潤(rùn)3.2萬元;當(dāng)投資2萬元時(shí),可獲得利潤(rùn)2.4萬元.
(1)請(qǐng)分別求出上述的正比例函數(shù)表達(dá)式和二次函數(shù)表達(dá)式;
(2)如果超市同時(shí)對(duì)A、B兩種商品共投資12萬元,請(qǐng)你設(shè)計(jì)一個(gè)能獲得最大利潤(rùn)的投資方案,并求出按此方案獲得的最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年河南省中招考試第二次模擬考試數(shù)學(xué)試卷(解析版) 題型:解答題

某超市計(jì)劃上兩個(gè)新項(xiàng)目:
項(xiàng)目一:銷售A種商品,所獲得利潤(rùn)y(萬元)與投資金額x(萬元)之間存在正比例函數(shù)關(guān)系:y=kx.當(dāng)投資5萬元時(shí),可獲得利潤(rùn)2萬元;
項(xiàng)目二:銷售B種商品,所獲得利潤(rùn)y(萬元)與投資金額x(萬元)之間存在二次函數(shù)關(guān)系:y=ax2+bx.當(dāng)投資4萬元時(shí),可獲得利潤(rùn)3.2萬元;當(dāng)投資2萬元時(shí),可獲得利潤(rùn)2.4萬元.
(1)請(qǐng)分別求出上述的正比例函數(shù)表達(dá)式和二次函數(shù)表達(dá)式;
(2)如果超市同時(shí)對(duì)A、B兩種商品共投資12萬元,請(qǐng)你設(shè)計(jì)一個(gè)能獲得最大利潤(rùn)的投資方案,并求出按此方案獲得的最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案