【題目】在平面直角坐標(biāo)系中,點,將點向左平移6個單位長度,得到點.
(1)直接寫出點的坐標(biāo);
(2)若拋物線經(jīng)過點,,求拋物線的表達(dá)式;
(3)若拋物線的頂點在直線上移動,當(dāng)拋物線與線段有2個公共點時,求拋物線頂點橫坐標(biāo)的取值范圍.
【答案】(1)(-4,-2);(2) (3)
【解析】
(1)根據(jù)點A的坐標(biāo)結(jié)合線段AB的長度,可得出點B的坐標(biāo);
(2)根據(jù)點A,B的坐標(biāo),利用待定系數(shù)法即可求出拋物線的表達(dá)式;
(3)根據(jù)已知設(shè)拋物線的頂點坐標(biāo)為,則分情況計算出當(dāng)拋物線經(jīng)過A、B兩點時t的范圍,即可解答.
(1)∵點A的坐標(biāo)為,將點向左平移6個單位長度得到點,
∴點B的坐標(biāo)為,即
(2)將,B代入得:
解得:
拋物線的表達(dá)式為:.
(3)拋物線的頂點在上
設(shè)拋物線的頂點坐標(biāo)為
①當(dāng)拋物線經(jīng)過B點時,將B(-4,2)代入,得:
②當(dāng)拋物線經(jīng)過A點時,將代入,得:
綜上所述,當(dāng)拋物線與直線AB有兩個交點時:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC內(nèi)接于⊙O,過點A作直線EF.
(1)如圖①所示,若AB為⊙O的直徑,要使EF成為⊙O的切線,還需要添加的一個條件是(至少說出兩種): 或者 .
(2)如圖②所示,如果AB是不過圓心O的弦,且∠CAE=∠B,那么EF是⊙O的切線嗎?試證明你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)(m 為常數(shù)).
(1)證明:不論 m 為何值,該函數(shù)的圖像與 x 軸總有兩個公共點;
(2)當(dāng) m 的值改變時,該函數(shù)的圖像與 x 軸兩個公共點之間的距離是否改變?若不變, 請求出距離;若改變,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)市場調(diào)查,發(fā)現(xiàn)進價為40元的臺燈每月的銷售量y(臺)與售價x(元)的相關(guān)信息如下:
售價x(元) | 50 | 60 | 70 | 80 | …… |
銷售量y(臺) | 200 | 180 | 160 | 140 | …… |
(1)試用你學(xué)過的函數(shù)來描述y與x的關(guān)系,這個函數(shù)可以是 函數(shù),求這個函數(shù)關(guān)系式;
(2)售價為多少元時,當(dāng)月的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點在平行四邊形的對角線上,過點、分別作、的平行線相交于點,連接,.
(1)求證:四邊形是菱形;
(2)若,,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張正方形紙片,依次沿著折痕,(其中)向上翻折兩次,形成“小船”的圖樣.若,四邊形與的周長差為,則正方形的周長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=6,將矩形ABCD繞點A逆時針旋轉(zhuǎn)得到矩形AEFG,AE,FG分別交射線CD于點P,H,連接AH,若點P是CH的中點,則△APH的周長為_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線與雙曲線(x>0)交于點.
(1)求a,k的值;
(2)已知直線過點且平行于直線,點P(m,n)(m>3)是直線上一動點,過點P分別作軸、軸的平行線,交雙曲線(x>0)于點、,雙曲線在點M、N之間的部分與線段PM、PN所圍成的區(qū)域(不含邊界)記為.橫、縱坐標(biāo)都是整數(shù)的點叫做整點.
①當(dāng)時,直接寫出區(qū)域內(nèi)的整點個數(shù);②若區(qū)域內(nèi)的整點個數(shù)不超過8個,結(jié)合圖象,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=x2+bx+c交x軸于A(﹣1,0),B(3,0)兩點,交y軸于點C.
(1)如圖1,求拋物線的解析式;
(2)如圖2,點P是第一象限拋物線上的一個動點,連接CP交x軸于點E,過點P作PK∥x軸交拋物線于點K,交y軸于點N,連接AN、EN、AC,設(shè)點P的橫坐標(biāo)為t,四邊形ACEN的面積為S,求S與t之間的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);
(3)如圖3,在(2)的條件下,點F是PC中點,過點K作PC的垂線與過點F平行于x軸的直線交于點H,KH=CP,點Q為第一象限內(nèi)直線KP下方拋物線上一點,連接KQ交y軸于點G,點M是KP上一點,連接MF、KF,若∠MFK=∠PKQ,MP=AE+GN,求點Q坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com