【題目】如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),∠AOB=100°,∠BOC=α.以OC為一邊作等邊三角形OCD,連接AC、AD.
(1)當(dāng)α=150°時(shí),試判斷△AOD的形狀,并說(shuō)明理由;
(2)當(dāng)△AOD是等腰三角形時(shí),求α的度數(shù).
【答案】(1)△OCD是等邊三角形,理由見(jiàn)解析;(2)當(dāng)α為130°、100°、160°時(shí),△AOD是等腰三角形.
【解析】
試題分析:(1)首先根據(jù)已知條件可以證明△BOC≌△ADC,然后利用全等三角形的性質(zhì)可以求出∠ADO的度數(shù),由此即可判定△AOD的形狀;
(2)利用(1)和已知條件及等腰三角形的性質(zhì)即可求解.
解:(1)∵△OCD是等邊三角形,
∴OC=CD,
∵△ABC是等邊三角形,
∴BC=AC,
∵∠ACB=∠OCD=60°,
∴∠BCO=∠ACD,
在△BOC與△ADC中,
,
∴△BOC≌△ADC,
∴∠BOC=∠ADC,
∵∠BOC=α=150°,∠ODC=60°,
∴∠ADO=150°﹣60°=90°,
∴△ADO是直角三角形;
(2)∵∠COB=∠CAD=α,∠AOD=200°﹣α,∠ADO=α﹣60°,∠OAD=40°,
①要使AO=AD,需∠AOD=∠ADO,
∴200°﹣α=α﹣60°,
∴α=130°;
②要使OA=OD,需∠OAD=∠ADO,
∴α﹣60°=40°,
∴α=100°;
③要使OD=AD,需∠OAD=∠AOD,
∴200°﹣α=40°,
∴α=160°.
所以當(dāng)α為130°、100°、160°時(shí),△AOD是等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)拋物線(xiàn)的解析式為 ,過(guò)點(diǎn)B1 (1,0 )作x軸的垂線(xiàn),交拋物線(xiàn)于點(diǎn)A1(1,2 );過(guò)點(diǎn)B2 (1,0 )作x軸的垂線(xiàn),交拋物線(xiàn)于點(diǎn)A2 ,… ;過(guò)點(diǎn) (,0 ) (n為正整數(shù) )作x軸的垂線(xiàn),交拋物線(xiàn)于點(diǎn) ,連接 ,得直角三角形.
(1)求a的值;
(2)直接寫(xiě)出線(xiàn)段 ,的長(zhǎng)(用含n的式子表示);
(3)在系列Rt△ 中,探究下列問(wèn)題:
①當(dāng)n為何值時(shí),Rt△是等腰直角三角形?
②設(shè)1≤k<m≤n (k,m均為正整數(shù)),問(wèn)是否存在Rt△與Rt△相似?若存在,求出其相似比;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】單位舉行歌詠比賽,分兩場(chǎng)舉行,第一場(chǎng)8名參賽選手的平均成績(jī)?yōu)?8分,第二場(chǎng)4名參賽選手的平均成績(jī)?yōu)?4分,那么這12名選手的平均成績(jī)是____分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年中秋小長(zhǎng)假長(zhǎng)沙縣的旅游收入約為1900萬(wàn),將1900萬(wàn)用科學(xué)記數(shù)法表示應(yīng)為( 。
A. 19×104 B. 1.9×104 C. 1.9×107 D. 0.19×108
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠A=100°,BI、CI分別平分∠ABC,∠ACB,則∠BIC=________,若BM、CM分別平分∠ABC,∠ACB的外角平分線(xiàn),則∠M=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一次函數(shù)y=(2﹣m)x﹣2的函數(shù)值y隨x的增大而減小,則m的取值范圍是( )
A.m<0
B.m>0
C.m<2
D.m>2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在銳角三角形ABC中,AH是BC邊上的高,分別以AB,AC為一邊,向外作正方形ABDE和ACFG,連接CE,BG和EG,EG與HA的延長(zhǎng)線(xiàn)交于點(diǎn)M,下列結(jié)論:①BG=CE;②BG⊥CE;③AM是△AEG的中線(xiàn);④∠EAM=∠ABC,其中正確結(jié)論的個(gè)數(shù)是( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com