【題目】如圖①,在四邊形 ABCD 中,∠A=x°,∠C=y°.
(1) ∠ABC+∠ADC= °.(用含 x,y 的代數式表示)
(2) BE、DF 分別為∠ABC、∠ADC 的外角平分線,
①若 BE∥DF,x=30,則 y= ;
②當 y=2x 時,若 BE 與 DF 交于點 P,且∠DPB=20°,求 y 的值.
(3) 如圖②,∠ABC 的平分線與∠ADC 的外角平分線交于點 Q,則∠Q= °.(用含 x,y 的代數式表示)
【答案】(1)(360-x-y). (2)①30°;x=40,y=80;(3)90+(x-y)
【解析】
(1)利用四邊形內角和是360°即可解題,(2)①作出圖像,利用四邊形的內角和是360°即可解題, ②利用內角和定理和角平分線的性質得到∠PBC+∠PDC=(∠NBC+∠MDC)=(x+y),再延長 BC,與 DP 交于點 Q,利用三角形的外角的性質即可求解,(3)利用四邊形BCDQ和四邊形ABCD的內角和是360°,分別表示出兩個等式,進行化簡整理可得∠A+∠ADC+∠C+2∠1=360°,再利用∠1-∠2=90°-()°,即可求解.
解:(1)∵四邊形ABCD的內角和是360°,
∴∠ABC+∠ADC=360°-(∠A+∠B)=(360-x-y)°.
(2)①過點C作CH∥DF,
∵ BE∥DF
∴CH∥BE,∠FDC=∠DCH,∠EBC=∠BCH,
∴∠ABC=180°-2∠CBE,∠ADC=180°-2∠FDC,∠BCD=∠EBC+∠FDC,
∴30°+180°-2∠CBE+∠EBC+∠FDC+180°-2∠FDC=360°,
∴∠EBC+∠FDC=30°,即y=30°,
②由(1)得∠ABC+∠ADC =(360-x-y) °
又∵∠ADC+∠MDC=180°,∠ABC+∠NDC=180°
∴∠NBC+∠MDC=(x+y)°
∵BE、DF 分別為平分∠ABC、∠ADC
∴∠PBC=∠NBC,∠PDC=∠MDC
∴∠PBC+∠PDC=(∠NBC+∠MDC)=(x+y)
延長 BC,與 DP 交于點 Q,見下圖,
∵∠BCD=∠PDC+∠DQC,∠DQC=∠P+∠QBP(外角性質)
∴∠BCD=∠P+∠PBC+∠PDC
∴y=20+(x+y),即y-x=40
又∵y=2x
∴x=40,y=80
(3)如下圖,∵∠ABC 的平分線與∠ADC 的外角平分線交于點 Q,
∴∠ABQ=∠CBQ=∠1,
∵四邊形BCDQ和四邊形ABCD的內角和是360°,
即∠Q+∠2+∠ADC+∠C+∠1=360°,
∠A+∠ADC+∠C+2∠1=360°,
整理得,∠Q=∠A+(∠1-∠2)
∵∠A+∠ADC+∠C+2∠1=360°,
整理得,∠1-∠2=90°-()°,
∴∠Q=[90+(x-y)]°
科目:初中數學 來源: 題型:
【題目】某中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊由長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊長為x米.
(1)若苗圃園的面積為72平方米,求x;
(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰三角形的底邊長為,面積是, 腰的垂直平分線分別交邊于點.若點為邊的中點,點為線段EF上一動點,則周長的最小值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,若A(﹣4,n),B(2,﹣4)是一次函數y=kx+b的圖象和反比例函數y=的圖象的兩個交點.
(1)求反比例函數和一次函數的解析式;
(2)求直線AB與x軸的交點C的坐標及△AOB的面積;
(3)觀察圖象,直接寫出反比例函數值大于一次函數值x取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】每年的6月5日為世界環(huán)保日,為提倡低碳環(huán)保,某公司決定購買10臺節(jié)省能源的新機器,現有甲、乙兩種型號的機器可選,其中每臺的價格、產量如下表:
甲型機器 | 乙型機器 | |
價格(萬元/臺) | a | b |
產量(噸/月) | 240 | 180 |
經調查:購買一臺甲型機器比購買一臺乙型機器多12萬元,購買2臺甲型機器比購買3臺乙型機器多6萬元.
(1) 求a、b的值;
(2) 若該公司購買新機器的資金不超過216萬元,請問該公司有哪幾種購買方案?
(3) 在(2)的條件下,若公司要求每月的產量不低于1890噸,請你為該公司設計一 種最省錢的購買方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】三角形紙片ABC中,∠C=90°,AC=1,BC=2.按圖①的方式在這張紙片中剪去一個盡可能大的正方形,稱為第1次剪取,記余下的兩個三角形面積和為S1;按圖②的方式在余下的Rt△ADF和Rt△BDE中,分別剪去盡可能大的正方形,稱為第2次剪取,記余下的兩個三角形面積和為S2;繼續(xù)操作下去…….
(1)如圖①,求和S1的值;
(2)第n次剪取后,余下的所有三角形面積之和Sn為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某天小明騎自行車上學,途中因自行車發(fā)生故障,修車耽誤了一段時間后繼續(xù)騎行,按時趕到了學校.圖中描述了他上學的途中離家距離(米)與離家時間(分鐘)之間的函數關系.下列說法中正確的個數是( )
(1)修車時間為15分鐘;
(2)學校離家的距離為4000米;
(3)到達學校時共用時間為20分鐘;
(4)自行車發(fā)生故障時離家距離為2000米.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD中,M為BC上一點,F是AM的中點,EF⊥AM,垂足為F,交AD的延長線于點E,交DC于點N.
(1)求證:△ABM ∽△EFA;
(2)若AB=12,BM=5,求DE的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com