【題目】如圖,已知等邊△AOC的周長(zhǎng)為3,作ODAC于點(diǎn)D,在x軸上取點(diǎn)C1,使CC1DC,以CC1為邊作等邊△A1CC1;作CD1A1C1于點(diǎn)D1,在x軸上取點(diǎn)C2,使C1C2D1C1,以C1C2為邊作等邊△A2C1C2;作C1D2A2C2于點(diǎn)D2,在x軸上取點(diǎn)C,使C2C3D2C2,以C2C3為邊作等邊△A3C2C3;,且點(diǎn)A,A1,A2,A3,都在第一象限,如此下去,則等邊△A2019C2018C2019的頂點(diǎn)A2019坐標(biāo)為_____

【答案】()

【解析】

根據(jù)等邊三角形的性質(zhì)分別求出C1C2,C2C3,C3C4,CnCn+1的邊長(zhǎng)即可解決問題.

∵等邊A1C1C2的周長(zhǎng)為3,ODAC于點(diǎn)D,

OC1,C1C2CDOC,

OC,CC1,C1C2C2C3,C2018C2019的長(zhǎng)分別為1, ,,,

OC2019OC+CC1+C1C2+C2C3,…+C2018C20191++++…+

等邊A2019C2018C2019頂點(diǎn)A2019的橫坐標(biāo)=,

等邊A2019C2018C2019頂點(diǎn)A2019的縱坐標(biāo)=×

故答案為:()

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=12,P是邊AB上一點(diǎn),把PBC沿直線PC折疊,頂點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)G,過點(diǎn)BBECG,垂足為E且在AD上,BEPC于點(diǎn)F.

(1)如圖1,若點(diǎn)EAD的中點(diǎn),求證:AEB≌△DEC;

(2)如圖2,①求證:BP=BF;

②當(dāng)AD=25,且AE<DE時(shí),求cosPCB的值;

③當(dāng)BP=9時(shí),求BEEF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:經(jīng)過三角形一邊中點(diǎn),且平分三角形周長(zhǎng)的直線叫做這個(gè)三角形在該邊上的中分線,其中落在三角形內(nèi)部的部分叫做中分線段.

1)如圖,△ABC中,ACAB,DE是△ABCBC邊上的中分線段,FAC中點(diǎn),過點(diǎn)BDE的垂線交AC于點(diǎn)G,垂足為H,設(shè)ACb,ABc

求證:DFEF

b6,c4,求CG的長(zhǎng)度;

2)若題(1)中,SBDHSEGH,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,AB為直徑,AC為弦.過BC延長(zhǎng)線上一點(diǎn)G,作GDAO于點(diǎn)D,交AC于點(diǎn)E,交⊙O于點(diǎn)F,MGE的中點(diǎn),連接CF,CM.

(1)判斷CM與⊙O的位置關(guān)系,并說明理由;

(2)若∠ECF=2A,CM=6,CF=4,求MF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系中,ニ次函數(shù)的圖像與坐標(biāo)軸交于A,B,C三點(diǎn),其中點(diǎn)A的坐標(biāo)為(-3,0),點(diǎn)B的坐標(biāo)為(4,0),連接AC,BC.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),在線段AC上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C作勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)0出發(fā),在線段OB上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)B作勻速運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t.連接PQ

(1)填空:b=_, c=_;

2)在點(diǎn)P,Q運(yùn)動(dòng)過程中,APQ可能是直角三角形嗎?請(qǐng)說明理由;

3)如圖2,點(diǎn)N的坐標(biāo)為,線段PQ的中點(diǎn)為H,連接NH,當(dāng)點(diǎn)Q關(guān)于直線NH的對(duì)稱點(diǎn)Q`恰好落在線段BC上時(shí),請(qǐng)直接寫出點(diǎn)Q`的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知OA是⊙O的半徑,AB為⊙O的弦,過點(diǎn)OOPOA,交AB的延長(zhǎng)線上一點(diǎn)P,OP交⊙O于點(diǎn)D,連接ADBD,過點(diǎn)B作⊙O的切線BCOP于點(diǎn)C

(1)求證:∠CBP=∠ADB;

(2)O44AB2,求線段BP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某大橋采用低塔斜拉橋橋型(如甲圖),圖乙是從圖甲引申出的平面圖,假設(shè)你站在橋上測(cè)得拉索AB與水平橋面的夾角是30°,拉索CD與水平橋面的夾角是60°,兩拉索頂端的距離BC為2米,兩拉索底端距離AD為20米,請(qǐng)求出立柱BH的長(zhǎng).(結(jié)果精確到0.1米, ≈1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,且AB=12,點(diǎn)C為半圓上的一點(diǎn).將此半圓沿BC所在的直線折疊,若圓弧BC恰好過圓心O,則圖中陰影部分的面積是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,CDAB,∠ABC=90°,AB=BC,將BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得到BAE,連接CE,過點(diǎn)BBGCE于點(diǎn)F,交AD于點(diǎn)G.

(1)如圖1CD=AB.

①求證:四邊形ABCD是正方形;

②求證:GAD中點(diǎn);

(2)如圖2,若CD<AB,請(qǐng)判斷G是否仍然是AD的中點(diǎn)?若是,請(qǐng)證明:若不是,請(qǐng)說理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案