【題目】如圖,點(diǎn)A(m,m+1),B(m+3,m-1)都在反比例函數(shù)y=的圖象上. 將線段 AB沿直線y=kx+b進(jìn)行對(duì)折得到對(duì)應(yīng)線段A′B′,且點(diǎn)A′ 始終在直線OA上,當(dāng)線段A′B′ 與x軸有交點(diǎn)時(shí),(1),m=____;(2),b的取值范圍是____.
【答案】m=3 ≤b≤.
【解析】
(1)由題可得m(m+1)=(m+3)(m-1),解這個(gè)方程就可求出m的值;
(2) 由于點(diǎn)A關(guān)于直線y=kx+b的對(duì)稱點(diǎn)點(diǎn)A1始終在直線OA上,因此直線y=kx+b必與直線OA垂直,只需考慮兩個(gè)臨界位置(A1在x軸上、B1在x軸上)對(duì)應(yīng)的b的值,就可以求出b的取值范圍.
(1)∵點(diǎn)A(m,m+1),B(m+3,m-1)都在反比例函數(shù)y=的圖象上.
∴m(m+1)=(m+3)(m-1).
解得:m=3.
(2) ①當(dāng)點(diǎn)B1落到x軸上時(shí),如圖1,
設(shè)直線OA的解析式為y=ax,
∵點(diǎn)A的坐標(biāo)為(3,4),
∴3a=4,即a=.
∴直線OA的解析式為y=x.
∵點(diǎn)A1始終在直線OA上,
∴直線y=kx+b與直線OA垂直.
∴k=-1.
∴k=-.
由于BB1∥OA,因此直線BB1可設(shè)為y=x+c.
∵點(diǎn)B的坐標(biāo)為(6,2),
∴×6+c=2,即c=-6.
∴直線BB1解析式為y=x-6.
當(dāng)y=0時(shí),x-6=0.則有x=.
∴點(diǎn)B1的坐標(biāo)為(,0).
∵點(diǎn)C是BB1的中點(diǎn),
∴點(diǎn)C的坐標(biāo)為(,)即(,1).
∵點(diǎn)C在直線y=-x+b上,
∴-×+b=1.
解得:b=.
②當(dāng)點(diǎn)A1落到x軸上時(shí),如圖2,
此時(shí),點(diǎn)A1與點(diǎn)O重合.
∵點(diǎn)D是AA1的中點(diǎn),A(3,4),A1(0,0),
∴D(,2).
∵點(diǎn)D在直線y=-x+b上,
∴-×+b=2.
解得:b=.
綜上所述:當(dāng)線段A1B1與x軸有交點(diǎn)時(shí),則b的取值范圍為≤b≤.
故答案為:≤b≤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市籃球隊(duì)到市一中選拔一名隊(duì)員,教練對(duì)王亮和李剛兩名同學(xué)進(jìn)行次分投籃測試,一人每次投個(gè)球,下圖記錄的是這兩名同學(xué)次投籃中所投中的個(gè)數(shù).
(1)請(qǐng)你根據(jù)圖中的數(shù)據(jù),填寫下表;
姓名 | 平均數(shù) | 眾數(shù) | 方差 |
王亮 | |||
李剛 |
(2)你認(rèn)為誰的成績比較穩(wěn)定,為什么?
(3)若你是教練,你打算選誰?簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AD=3,DC=5,AB=4,∠B=45°.動(dòng)點(diǎn)M從B點(diǎn)出發(fā)沿線段BC以每秒2個(gè)單位長度的速度向終點(diǎn)C運(yùn)動(dòng);動(dòng)點(diǎn)N同時(shí)從C點(diǎn)出發(fā)沿射線CD以每秒1個(gè)單位長度的速度運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
(1)BC=____.
(2)MC=_____.(用t表示)
(3)求t為何值時(shí),四邊形AMCD為平行四邊形.
(4)直接寫出t為何值時(shí),△AND為直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)數(shù)學(xué)興趣小組為了解本校學(xué)生對(duì)電視節(jié)目的喜愛情況,隨機(jī)調(diào)查了部分學(xué)生最喜愛哪一類節(jié)目(被調(diào)查的學(xué)生只選一類并且沒有不選擇的),并將調(diào)查結(jié)果制成了如下的兩個(gè)統(tǒng)計(jì)圖(不完整).請(qǐng)你根據(jù)圖中所提供的信息,完成下列問題:
(1)求本次調(diào)查的學(xué)生人數(shù);
(2)請(qǐng)將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整,并求出新聞節(jié)目在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);
(3)若該中學(xué)有2000名學(xué)生,請(qǐng)估計(jì)該校喜愛電視劇節(jié)目的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊中,點(diǎn)D在線段AC上,E為BC延長線上一點(diǎn),且CD = CE,連接BD,連接AE.
(1)如圖1,若,求線段AD的長;
(2)如圖2,若F是線段BD的中點(diǎn),連接AF,若,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在課外學(xué)習(xí)時(shí)遇到這樣一個(gè)問題:
定義:如果二次函數(shù)y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常數(shù))與y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常數(shù))滿足a1+a2=0,b1=b2,c1+c2=0,則稱這兩個(gè)函數(shù)互為“旋轉(zhuǎn)函數(shù)”.
求函數(shù)y=﹣x2+3x﹣2的“旋轉(zhuǎn)函數(shù)”.
小明是這樣思考的:由函數(shù)y=﹣x2+3x﹣2可知,a1=﹣1,b1=3,c1=﹣2,根據(jù)a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2,就能確定這個(gè)函數(shù)的“旋轉(zhuǎn)函數(shù)”.
請(qǐng)參考小明的方法解決下面問題:
(1)寫出函數(shù)y=﹣x2+3x﹣2的“旋轉(zhuǎn)函數(shù)”;
(2)若函數(shù)y=﹣x2+mx﹣2與y=x2﹣2nx+n互為“旋轉(zhuǎn)函數(shù)”,求(m+n)2015的值;
(3)已知函數(shù)y=﹣(x+1)(x﹣4)的圖象與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)A、B、C關(guān)于原點(diǎn)的對(duì)稱點(diǎn)分布是A1,B1,C1,試證明經(jīng)過點(diǎn)A1,B1,C1的二次函數(shù)與函數(shù)y=﹣(x+1)(x﹣4)互為“旋轉(zhuǎn)函數(shù).”
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△BAD是由△BEC在平面內(nèi)繞點(diǎn)B旋轉(zhuǎn)60°而得,且AB⊥BC,BE=CE,連接DE.
(1)求證:△BDE≌△BCE;
(2)試判斷四邊形ABED的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC是⊙O的內(nèi)接三角形,且AB=BC,點(diǎn)D為劣弧BC上的一點(diǎn),連接BD、DC.
(1)如圖1,若∠BDC=120°,求證:△ABC是等邊三角形;
(2)如圖2,在(1)的條件下,線段CD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,得到線段CE,連接AE,求證:BD=AE;
(3)如圖3,在(2)的條件下,連接OE,若⊙O的半徑為,OE=2,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,∠DAB=130°,連結(jié)OC,P是半徑OC上的一個(gè)動(dòng)點(diǎn),連結(jié)PD、PB,則么DPB的大小可能為( 。
A. 40° B. 80° C. 110° D. 130°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com