【題目】已知,內(nèi)接于,點是弧的中點,連接、

1)如圖1,若,求證:;

2)如圖2,若平分,求證:;

3)在(2)的條件下,若,,求的值.

【答案】(1)見解析;(2)見解析;(3)2.

【解析】

(1)由點P是弧AB的中點,可得出AP=BP, 通過證明 ,可得出進而證明AB PC.

(2)由PA是∠CPM的角平分線,得到∠MPA=APC, 等量代換得到∠ABC=ACB, 根據(jù)等腰三角形的判定定理即可證得AB=AC.

(3)過A點作ADBC,有三線合一可知AD平分BC,OAD上,連結(jié)OB,則∠BODBAC,根據(jù)圓周角定理可知∠BOD=BAC, BPC=BAC,由∠BOD=BPC可得 ,設(shè)OB= ,根據(jù)勾股定理可算出OB、BD、OD、AD的長,再次利用勾股定理即可求得AP的值.

解:(1)∵點P是弧AB的中點,如圖1,

APBP,

APCBPC

,

∴△APC≌△BPCSSS),

∴∠ACPBCP,

ACEBCE

,

∴△ACE≌△BCESAS),

∴∠AECBEC,

∵∠AEC+BEC=180°,

∴∠AEC=90°,

ABPC;

(2)PA平分∠CPM,

∴∠MPAAPC,

∵∠APC+BPC+ACB=180°,MPA+APC+BPC=180°,

∴∠ACBMPAAPC,

∵∠APCABC,

∴∠ABCACB,

ABAC;

(3)過A點作ADBCBCD,連結(jié)OPABE,如圖2,

由(2)得出ABAC,

AD平分BC,

∴點OAD上,

連結(jié)OB,則∠BODBAC,

∵∠BPCBAC

=,

設(shè)OB=25x,則BD=24x,

OD=7x,

中,AD=25x+7x=32xBD=24x,

AB=40x,

AC=8,

AB=40x=8,

解得:x=0.2,

OB=5,BD=4.8,OD=1.4,AD=6.4,

∵點P的中點,

OP垂直平分AB,

AEAB=4,AEPAEO=90°,

中,OE

PEOPOE=5﹣3=2,

中,AP

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,AB是⊙O的直徑,P為⊙O外一點,C,D為⊙O上兩點,連結(jié)OP,CDPDPC.已知AB8

1)若OP5,PD3,求證:PD是⊙O的切線;

2)若PD、PC是⊙O的切線;

①求證:OPCD;

②連結(jié)AD,BC,如圖2,若∠DAB50°,∠CBA70°,求弧CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB與⊙O相切于點C,OA,OB分別交⊙O于點D,E,CD=CE.

(1)求證:OA=OB

(2)已知AB=4,OA=4,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名同學(xué)在一次用頻率去估計概率的實驗中,繪出了某一結(jié)果出現(xiàn)的頻率的折線圖,則符合這一結(jié)果的實驗可能是

A. 擲一枚正六面體的骰子,出現(xiàn)1點的概率

B. 拋一枚硬幣,出現(xiàn)正面的概率

C. 任意寫一個整數(shù),它能被2整除的概率

D. 從一個裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點的坐標是,點的坐標是,以線段為直徑作,交軸的正半軸于點,過、、三點作拋物線.

1)求拋物線的解析式;

2)連結(jié),,點延長線上一點,的角平分線于點,連結(jié),在直線上找一點,使得的周長最小,并求出此時點的坐標;

3)在(2)的條件下,拋物線上是否存在點,使得,若存在,請直接寫出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,O為原點,點A(﹣,0),點B(0,1)把△ABO繞點O順時針旋轉(zhuǎn),得△A'B'O,點AB旋轉(zhuǎn)后的對應(yīng)點為A',B',記旋轉(zhuǎn)角為α(0°<α<360°).

(1)如圖①,當點A′,B,B′共線時,求AA′的長.

(2)如圖②,當α=90°,求直線ABAB′的交點C的坐標;

(3)當點A′在直線AB上時,求BB′與OA′的交點D的坐標(直接寫出結(jié)果即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,對角線AC、BD相交于點O,且OA=OB

1)求證:四邊形ABCD是矩形;

2)若AB=2,∠AOB=60°,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某儲運部緊急調(diào)撥一批物資,調(diào)進物資共用4小時,調(diào)進物資2小時后開始調(diào)出物資(調(diào)進物資與調(diào)出物資的速度均保持不變).儲運部庫存物資(噸)與時間(小時)之間的函數(shù)關(guān)系如圖所示,這批物資從開始調(diào)進到全部調(diào)出需要的時間是(

A. 4小時B. 4.3小時C. 4.4小時D. 5小時

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方形ABCD中,GCD邊中點,連接AG并延長交BC邊的延長線于E點,對角線BDAGF點.已知FG=2,則線段AE的長度為( 。

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

同步練習冊答案