【題目】如圖,一次函數(shù)y=mx+2x軸、y軸分別交于點A(-1,0)和點B,與反比例函數(shù)的圖像在第一象限內(nèi)交于C(1,c).

1)求m的值和反比例函數(shù)的表達式;

2)過x軸上的點D(a,0)作平行于軸的直線a1),分別與直線AB和雙曲線交于點PQ,且PQ=2QD,求點D的坐標.

【答案】1m=2,;(2D(2,0).

【解析】

1)把A點坐標代入y=mx+2中求出m值,再利用一次函數(shù)解析式確定C點坐標,然后把C點坐標代入中求出反比例函數(shù)的表達式;

2)利用反比例函數(shù)和一次函數(shù)圖象上點的坐標特征得到),再利用PQ=2QD得到,然后解方程即可得到D點坐標.

解:(1)把A(-1,0)代入y=mx+2,得

-m+2=0

m=2

∴一次函數(shù)的解析式為y=2x+2

C(1,c)代入y=2x+2,得

c=1×2+2=4

C(1,4)

k=1×4=4

∴反比例函數(shù)的表達式為;

2)∵D(a,0),PDy軸,且P、Q分別在y=2x+2上;

P(a,2a+2),Q()

PQ=2QD,

整理,得a2+a-6=0

解得a1=2,a2=-3(舍去)

D(2,0)

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某居民小區(qū)有一朝向為正南方向的居民樓,該居民樓的一樓是高5米的小區(qū)超市,超市以上是居民住房.在該樓的前面15米處要蓋一棟高20米的新樓.當冬季正午的陽光與水平線的夾角為32°時.

1)問超市以上的居民住房采光是否有影響,為什么?

2)若要使超市采光不受影響,兩樓應(yīng)相距多少米?(結(jié)果保留整數(shù),參考數(shù)據(jù):sin32°≈cos32°≈,tan32°≈.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】雙峰縣教育局要求各學校加強對學生的安全教育,全縣各中小學校引起高度重視,小剛就本班同學對安全知識的了解程度進行了一次調(diào)查統(tǒng)計.他將統(tǒng)計結(jié)果分為三類,A:熟悉;B:了解較多;C:一般了解。圖和圖是他采集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答以下問題:

(1)求小剛所在的班級共有多少名學生;

(2)在條形圖中,將表示“一般了解”的部分補充完整‘’

(3)在扇形統(tǒng)計圖中,計算“了解較多”部分所對應(yīng)的扇形圓心角的度數(shù);

(4)如果小剛所在年級共1000名同學,請你估算全年級對安全知識“了解較多”的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面有4張形狀、大小完全相同的方格紙,方格紙中的每個小正方形的邊長都是1,請在方格紙中分別畫出符合要求的圖形,所畫圖形各頂點必須與方格紙中小正方形的頂點重合,具體要求如下:

(1)畫一個直角邊長為4,面積為6的直角三角形.

(2)畫一個底邊長為4,面積為8的等腰三角形.

(3)畫一個面積為5的等腰直角三角形.

(4)畫一個邊長為2,面積為6的等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.

1)求AB、C的坐標;

2)點M為線段AB上一點(點M不與點AB重合),過點Mx軸的垂線,與直線AC交于點E,與拋物線交于點P,過點PPQ∥AB交拋物線于點Q,過點QQN⊥x軸于點N.若點P在點Q左邊,當矩形PQMN的周長最大時,求△AEM的面積;

3)在(2)的條件下,當矩形PMNQ的周長最大時,連接DQ.過拋物線上一點Fy軸的平行線,與直線AC交于點G(點G在點F的上方).FG=DQ,求點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中放置5個正方形,點B1y軸上,點C1、E1、E2、C2E3、E4C3x軸上.若正方形A1B1C1D1的邊長為1,∠B1C1O60,B1C1B2C2B3C3,則點A3x軸的距離是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為1的正方形,E,FBD所在直線上的兩點,若AE=,∠EAF=135°,則下列結(jié)論正確的是(  。

A. DE=1B. tanAFO=C. AF=D. 四邊形AFCE的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,己知正方形ABCD的邊長為4, P是對角線BD上一點,PE⊥BC于點E, PF⊥CD于點F,連接AP, EF.給出下列結(jié)論:①PD=EC:②四邊形PECF的周長為8;③△APD一定是等腰三角形:④AP=EF⑤EF的最小值為;⑥AP⊥EF.其中正確結(jié)論的序號為(

A. ①②④⑤⑥B. ①②④⑤

C. ②④⑤D. ②④⑤⑥

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學家劉徽將勾股形(古人稱直角三角形為勾股形)分割成一個正方形和兩對全等的直角三角形,得到一個恒等式,后人借助這種分割方法所得的圖形證明了勾股定理,如圖所示的長方形由兩個這樣的圖形拼成,若,,則該長方形的面積為__________.

查看答案和解析>>

同步練習冊答案