【題目】如圖,拋物線的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.
(1)求A、B、C的坐標;
(2)點M為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N.若點P在點Q左邊,當矩形PQMN的周長最大時,求△AEM的面積;
(3)在(2)的條件下,當矩形PMNQ的周長最大時,連接DQ.過拋物線上一點F作y軸的平行線,與直線AC交于點G(點G在點F的上方).若FG=DQ,求點F的坐標.
【答案】(1)A(-3,0),B(1,0),C(0,3); (2);(3)或(1,0).
【解析】
試題(1)通過解析式即可得出C點坐標,令y=0,解方程得出方程的解,即可求得A、B的坐標;
(2)設M點橫坐標為m,則PM=,MN=(﹣m﹣1)×2=﹣2m﹣2,矩形PMNQ的周長d=,將配方,由二次函數(shù)的性質(zhì),即可得出m的值,然后求得直線AC的解析式,把x=m代入可以求得三角形的邊長,從而求得三角形的面積;
(3)設F(n,),由已知若FG=DQ,即可求得.
試題解析:解:(1)由拋物線可知,C(0,3),令y=0,則,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0);
(2)由拋物線可知,對稱軸為x=﹣1,設M點的橫坐標為m,則PM=,MN=(﹣m﹣1)×2=﹣2m﹣2,∴矩形PMNQ的周長=2(PM+MN)=()×2==,∴當m=﹣2時矩形的周長最大.∵A(﹣3,0),C(0,3),設直線AC解析式為y=kx+b,解得k=1,b=3,∴解析式y=x+3,當x=﹣2時,則E(﹣2,1),∴EM=1,AM=1,∴S=AMEM=;
(3)∵M點的橫坐標為﹣2,拋物線的對稱軸為x=﹣1,∴N應與原點重合,Q點與C點重合,∴DQ=DC,把x=﹣1代入,解得y=4,∴D(﹣1,4),∴DQ=DC=,∵FG=DQ,∴FG=4,設F(n,),則G(n,n+3),∵點G在點F的上方,∴=4,解得:n=﹣4或n=1,∴F(﹣4,﹣5)或(1,0).
科目:初中數(shù)學 來源: 題型:
【題目】班級元旦晚會上,主持人給大家?guī)砹艘粋有獎競猜題,他在一個不透明的袋子中放了若干個形狀大小完全相同的白球,想請大家想辦法估計出袋中白球的個數(shù).數(shù)學課代表小明是這樣來估計的:他先往袋中放入10個形狀大小與白球相同的紅球,混勻后再從袋子中隨機摸出20個球,發(fā)現(xiàn)其中有4個紅球.如果設袋中有白球x個,根據(jù)小明的方法用來估計袋中白球個數(shù)的方程是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)已知:a=﹣2,b=+2,求代數(shù)式a2b﹣ab2的值;
(2)已知實數(shù)x、y滿足x2+10x++25=0,則(x+y)2019的值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線l:y=﹣x+6交y軸于點A,與x軸交于點B,過A、B兩點的拋物線m與x軸的另一個交點為C,(C在B的左邊),如果BC=5,求拋物線m的解析式,并根據(jù)函數(shù)圖像指出當m的函數(shù)值大于0的函數(shù)值時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知BD是△ABC的角平分線,ED⊥BC,∠BAC=90°,∠C=30°.
(1)求證:CE=BE;
(2)若AD=3,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知y是x的一次函數(shù),且當x=-4,y=9;當x=6時,y=-1.
(1)求這個一次函數(shù)的解析式和自變量x的取值范圍;
(2)當x=-時,函數(shù)y的值;
(3)當y=7時,自變量x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】前年甲廠全年的產(chǎn)值比乙廠多12萬元,在其后的兩年內(nèi),兩個廠的產(chǎn)值都有所增加:甲廠每年的產(chǎn)值比上一年遞增10萬元,而乙廠每年的產(chǎn)值比上一年增加相同的百分數(shù).去年甲廠全年的產(chǎn)值仍比乙廠多6萬元,而今年甲廠全年產(chǎn)值反而比乙廠少3.2萬元.前年甲乙兩車全年的產(chǎn)值分別是多少?乙廠每年的產(chǎn)值遞增的百分數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,甲、乙兩人分別騎自行車和摩托車沿相同路線由A地到B地,行駛過程中的函數(shù)圖象如圖所示,請根據(jù)圖象回答下列問題:
(1)______先出發(fā),提前______小時;
(2)______先到達B地,早到______小時;
(3)A地與B地相距______千米;
(4)甲乙兩人在途中的速度分別是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com