【題目】前年甲廠全年的產(chǎn)值比乙廠多12萬元,在其后的兩年內(nèi),兩個廠的產(chǎn)值都有所增加:甲廠每年的產(chǎn)值比上一年遞增10萬元,而乙廠每年的產(chǎn)值比上一年增加相同的百分數(shù).去年甲廠全年的產(chǎn)值仍比乙廠多6萬元,而今年甲廠全年產(chǎn)值反而比乙廠少3.2萬元.前年甲乙兩車全年的產(chǎn)值分別是多少?乙廠每年的產(chǎn)值遞增的百分數(shù)是多少?
【答案】前年甲廠全年的產(chǎn)值為92萬元,乙廠全年的產(chǎn)值為80萬元,乙廠每年的產(chǎn)值遞增的百分數(shù)是20%.
【解析】
根據(jù)題意,設(shè)前年乙廠全年的產(chǎn)值為x萬元,乙廠每年比上一年遞增的百分數(shù)為y,則甲廠前年的產(chǎn)值為(x+12)萬元,利用甲廠和乙廠的產(chǎn)值關(guān)系列出二元二次方程組,解得即可.
設(shè)前年乙廠全年的產(chǎn)值為x萬元,乙廠每年比上一年遞增的百分數(shù)為y,根據(jù)題意得
解得
80+12=92(萬元),
答:前年甲廠全年的產(chǎn)值為92萬元,乙廠全年的產(chǎn)值為80萬元,乙廠每年的產(chǎn)值遞增的百分數(shù)是20%,
故答案為:92,80,20%.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:AC是菱形ABCD的對角線,且AC=BC.
(1)如圖①,點P是△ABC的一個動點,將△ABP繞著點B旋轉(zhuǎn)得到△CBE.
①求證:△PBE是等邊三角形;
②若BC=5,CE=4,PC=3,求∠PCE的度數(shù);
(2)連結(jié)BD交AC于點O,點E在OD上且DE=3,AD=4,點G是△ADE內(nèi)的一個動點如圖②,連結(jié)AG,EG,DG,求AG+EG+DG的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.
(1)求A、B、C的坐標;
(2)點M為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N.若點P在點Q左邊,當矩形PQMN的周長最大時,求△AEM的面積;
(3)在(2)的條件下,當矩形PMNQ的周長最大時,連接DQ.過拋物線上一點F作y軸的平行線,與直線AC交于點G(點G在點F的上方).若FG=DQ,求點F的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某項研究表明,大拇指與小拇指盡量張開時,兩指尖的距離稱為指距.如表是測得的指距與身高的一組數(shù)據(jù):
指距d(cm) | 19 | 20 | 21 |
身高h(cm) | 151 | 160 | 169 |
(1)你能確定身高h與指距d之間的函數(shù)關(guān)系式嗎?
(2)若某人的身高為196cm,一般情況下他的指距應(yīng)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線AB與軸交于點A,與軸交于點B,與直線OC:交于點C.
(1)若直線AB解析式為,
①求點C的坐標;
②求△OAC的面積.
(2)如圖2,作的平分線ON,若AB⊥ON,垂足為E, OA=4,P、Q分別為線段OA、OE上的動點,連結(jié)AQ與PQ,試探索AQ+PQ是否存在最小值?若存在,求出這個最小值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點A在y軸正半軸上,點B的坐標為(0,﹣3),反比例函數(shù)y=﹣的圖象經(jīng)過點C.
(1)求點C的坐標;
(2)若點P是反比例函數(shù)圖象上的一點且S△PAD=S正方形ABCD;求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB// CD,Rt△EFG的頂點F,G分別落在直線AB,CD上,GE交AB于點H,∠EFG=90°,∠E=32°.
(1)∠FGE= °
(2)若GE平分∠FGD,求∠EFB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與x軸交于點,與y軸交于點B,拋物線經(jīng)過點.
求k的值和拋物線的解析式;
為x軸上一動點,過點M且垂直于x軸的直線與直線AB及拋物線分別交于點.
若以O,B,N,P為頂點的四邊形OBNP是平行四邊形時,求m的值.
當 時,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對非負實數(shù)“四舍五入”到個位的值記為.即當為非負整數(shù)時,若,則.如,.給出下列關(guān)于的結(jié)論:(1);(2);(3)若,則實數(shù)的取值范圍是;(4)當,為非負整數(shù)時,有;(5);其中,正確的結(jié)論是__________(填寫所有正確的序號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com