【題目】如圖,已知反比例函數(shù)的圖像與一正比例函數(shù)的圖像相交于點,點的坐標是.

1)求正比例函數(shù)的解析式;

2)若正比例函數(shù)的圖像與反比例函數(shù)的圖像在第一象限內(nèi)交于點,過點軸的垂線,為垂足,且交直線于點,過點軸的垂線,為垂足,求梯形的面積;

3)連結(jié),求的面積.

【答案】1)正比例函數(shù)的解析式為;(2;(3

【解析】

1)根據(jù)自變量的值,可得相應的函數(shù)值,根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)根據(jù)自變量的值求得相應的函數(shù)值,即點P的坐標,通過聯(lián)立兩個解析式得方程組求交點B的坐標,求得線段BDCD的長,根據(jù)梯形面積公式求解;(3)根據(jù)反比例函數(shù)的性質(zhì)可得,利用割補法求得三角形的面積.

1)設正比例函數(shù)的解析式為:,

代入,

,

A1,4

代入得,得,

∴正比例函數(shù)的解析式為:

2)把代入,則,

,

,

聯(lián)立與反比例函數(shù)得,

解得:,

,

,

3)∵AB在雙曲線上,且ACx軸,BDx軸,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在《九章算術》“勾股”章中有這樣一個問題:

“今有邑方不知大小,各中開門,出北門二十步有木,出南門十回步,折而西行一千七百七十五步見木.問邑方幾何.”用今天的話說,大意是:如圖,DEFG是一座正方形小城,北門H位于DG的中點,南門K位于EF的中點,出北門20步到A處有一樹木,出南門14步到C,再向西行1775步到B處,正好看到A處的樹木(即點D在直線AB上),求小城的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2-2(k+1)xk2+2k=0.

(1)求證:k取任何實數(shù)值,方程總有不相等的實數(shù)根;

(2)若等腰△ABC的周長為14,另兩邊長b,c恰好是這個方程的兩個根,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】仙降是瑞安重要的制鞋基地,其生產(chǎn)的鞋子暢銷世界各地,某制鞋企業(yè)欲將件產(chǎn)品運往三地銷售,運往地的費用為18/件,運往地的費用為20/件,運往地的費用為17/件,要求運往地的件數(shù)與運往地的件數(shù)相同. 設安排件產(chǎn)品運往地.

1)若①運往地件數(shù)為 件(用含的代數(shù)式表示);②若總運費不超過1850元,則運往地至少有多少件?

2)若總運費為1900元,則的最大值為 .(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:順次連接矩形A1B1C1D1四邊的中點得到四邊形A2B2C2D2,再順次連接四邊形A2B2C2D2四邊的中點得四邊形A3B3C3D3,…,按此規(guī)律得到四邊形AnBnCnDn.若矩形A1B1C1D1的面積為24,那么四邊形A2019B2019C2019D2019的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長為半徑作弧,分別交ABAD于點M,N②分別以M,N為圓心,以大于MN的長為半徑作弧,兩弧相交于點P;③作AP射線,交邊CD于點Q,若DQ=2QC,BC=3,則平行四邊形ABCD周長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的直徑,點C⊙O上一點,經(jīng)過CCD⊥AB于點D,CF⊙O的切線,過點AAE⊥CFE,連接AC.

(1)求證:AE=AD.

(2)AE=3,CD=4,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ADBC,點ECD上一點,AE平分∠BAD,BF平分∠ABC,延長BEAD的延長線于點F

1)求證:△ABE≌△AFE;

2)若AD2,BC6,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)x、y軸分別交于A、B兩點,x、y軸交于C、D兩點.

1)求A、BCD的坐標(用含k、m的代數(shù)式表示);

2)若,求的值;

3)在(2)的前提下,若的面積為27,求m的值.

查看答案和解析>>

同步練習冊答案