【題目】已知一次函數(shù)與x、y軸分別交于A、B兩點,與x、y軸交于C、D兩點.
(1)求A、B、C、D的坐標(用含k、m的代數(shù)式表示);
(2)若,求的值;
(3)在(2)的前提下,若的面積為27,求m的值.
【答案】(1),,,;(2);(3).
【解析】
(1)根據(jù)A、B、C、D所在的直線和坐標特征即可求出A、B、C、D的坐標;
(2)根據(jù)A、D的坐標可求出OA和OD的長,再根據(jù)全等三角形的性質(zhì)可得OA=OD,從而求出的值;
(3)由(2)可得,然后根據(jù)點A、C、D的坐標分別求出OA、OD、OC,從而求出AC,然后根據(jù)三角形的面積列方程即可.
(1)將y=0代入中,得;將x=0代入中,得;將y=0代入中,得;將x=0代入中,得
∴,,,;
(2)∵,
∴OA=,OD=
∵
∴OA=OD
即
∴;
(3)∵
∴
∵
∴OC=
∵OA= OD=,的面積為27
∴AC=OA+OC=
∴S△DAC=AC·OD=27
∴··=27
解得:
∵
∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知反比例函數(shù)的圖像與一正比例函數(shù)的圖像相交于點,點的坐標是.
(1)求正比例函數(shù)的解析式;
(2)若正比例函數(shù)的圖像與反比例函數(shù)的圖像在第一象限內(nèi)交于點,過點作軸的垂線,為垂足,且交直線于點,過點作軸的垂線,為垂足,求梯形的面積;
(3)連結(jié),求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y=kx+2的圖象經(jīng)過點A,且y隨x的增大而減小.則A點的坐標可以是( 。
A.(2,5)B.(﹣1,1)C.(3,0)D.(,4)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,BA=BC,CO⊥AB于點O,AO=4,BO=6.
(1)求BC,AC的長;
(2)若點D是射線OB上的一個動點,作DE⊥AC于點E,連結(jié)OE.
①當點D在線段OB上時,若△AOE是以AO為腰的等腰三角形,請求出所有符合條件的OD的長.
②設(shè)DE交直線BC于點F,連結(jié)OF,CD,若S△OBF:S△OCF=1:4,則CD的長為 (直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:△ABC是三邊都不相等的三角形,點O和點P是這個三角形內(nèi)部兩點.
(1)如圖①,如果點P是這個三角形三個內(nèi)角平分線的交點,那么∠BPC和∠BAC有怎樣的數(shù)量關(guān)系?請說明理由;
(2)如圖②,如果點O是這個三角形三邊垂直平分線的交點,那么∠BOC和∠BAC有怎樣的數(shù)量關(guān)系?請說明理由;
(3)如圖③,如果點P(三角形三個內(nèi)角平分線的交點),點O(三角形三邊垂直平分線的交點)同時在不等邊△ABC的內(nèi)部,那么∠BPC和∠BOC有怎樣的數(shù)量關(guān)系?請直接回答.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A(2,4),B(4,2),在x軸上取一點P,使點P到點A和點B的距離之和最小,則點P的坐標是_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場一品牌服裝,銷售一件可獲利元,為在十一期間增加盈利,進行促銷活動,決定采取降價措施.根據(jù)以往銷售經(jīng)驗及市場調(diào)查發(fā)現(xiàn),每件服裝降價(元)與每天的銷售量(件)之間的關(guān)系如下表
(元) | … | |||||
(件) | … |
請你按照上表,求與之間的函數(shù)解析式.
為保證每天能盈利元,又能吸引顧客,每件服裝應降價多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某賓館有客房間供游客居住,當每間客房的定價為每天元時,客房恰好全部住滿;如果每間客房每天的定價每增加元,就會減少間客房出租.設(shè)每間客房每天的定價增加元,賓館出租的客房為間.求:
關(guān)于的函數(shù)關(guān)系式;
如果某天賓館客房收入元,那么這天每間客房的價格是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場禮品柜臺元旦期間購進大量賀年卡,一種賀年卡平均每天可售出張,每張盈利元.為了盡快減少庫存,商場決定采取適當?shù)慕祪r措施,調(diào)查發(fā)現(xiàn),如果這種賀年卡的售價每降低元,那么商場平均每天可多售出張.商場要想平均每天盈利元,每張賀年卡應降價多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com