【題目】某賓館有客房間供游客居住,當(dāng)每間客房的定價(jià)為每天元時(shí),客房恰好全部住滿;如果每間客房每天的定價(jià)每增加元,就會(huì)減少間客房出租.設(shè)每間客房每天的定價(jià)增加元,賓館出租的客房為間.求:
關(guān)于的函數(shù)關(guān)系式;
如果某天賓館客房收入元,那么這天每間客房的價(jià)格是多少元?
【答案】(1)y=-x+200;(2)這天的每間客房的價(jià)格是元或元.
【解析】
(1)根據(jù)題意直接寫出函數(shù)關(guān)系式,然后整理即可;
(2)用每間房的收入(180+x),乘以出租的房間數(shù)(-x+200)等于總收入列出方程求解即可.
(1)設(shè)每間客房每天的定價(jià)增加x元,賓館出租的客房為y間,
根據(jù)題意,得:y=200-4×,
∴y=-x+200;
(2)設(shè)每間客房每天的定價(jià)增加x元,
根據(jù)題意,得(180+x)(-x+200)=38400,
整理后,得x2-320x+6000=0,
解得x1=20,x2=300,
當(dāng)x=20時(shí),x+180=200(元),
當(dāng)x=300時(shí),x+180=480(元),
答:這天的每間客房的價(jià)格是200元或480元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD∥BC,點(diǎn)E是CD上一點(diǎn),AE平分∠BAD,BF平分∠ABC,延長BE交AD的延長線于點(diǎn)F
(1)求證:△ABE≌△AFE;
(2)若AD=2,BC=6,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)與x、y軸分別交于A、B兩點(diǎn),與x、y軸交于C、D兩點(diǎn).
(1)求A、B、C、D的坐標(biāo)(用含k、m的代數(shù)式表示);
(2)若,求的值;
(3)在(2)的前提下,若的面積為27,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線.
當(dāng)拋物線的頂點(diǎn)在軸上時(shí),求該拋物線的解析式;
不論取何值時(shí),拋物線的頂點(diǎn)始終在一條直線上,求該直線的解析式;
若有兩點(diǎn),且該拋物線與線段始終有交點(diǎn),請直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=x與雙曲線y=交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為.
(1)求k的值;
(2)若雙曲線y=上點(diǎn)C的縱坐標(biāo)為3,求△AOC的面積;
(3)在坐標(biāo)軸上有一點(diǎn)M,在直線AB上有一點(diǎn)P,在雙曲線y=上有一點(diǎn)N,若以O(shè)、M、P、N為頂點(diǎn)的四邊形是有一組對角為60°的菱形,請寫出所有滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=6,BC=8.
(1)用直尺和圓規(guī)作∠A的平分線,交BC于點(diǎn)D;(要求:不寫作法,保留作圖痕跡)
(2)求S△ADC: S△ADB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,BC=3,∠ABC和∠ACB的平分線相交于點(diǎn)O,OE∥AB,OF∥AC,則三角形OEF的周長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E在△ABC外部,點(diǎn)D在邊BC上,DE交AC于點(diǎn)F.若∠1=∠2=∠3,AC=AE,求證△ABC≌△ADE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長線上的一點(diǎn),BE=BA,過E作EF⊥AB,F為垂足,下列結(jié)論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④AE=EC,其中正確的是________(填序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com