【題目】某商場(chǎng)一品牌服裝,銷(xiāo)售一件可獲利元,為在十一期間增加盈利,進(jìn)行促銷(xiāo)活動(dòng),決定采取降價(jià)措施.根據(jù)以往銷(xiāo)售經(jīng)驗(yàn)及市場(chǎng)調(diào)查發(fā)現(xiàn),每件服裝降價(jià)(元)與每天的銷(xiāo)售量(件)之間的關(guān)系如下表
(元) | … | |||||
(件) | … |
請(qǐng)你按照上表,求與之間的函數(shù)解析式.
為保證每天能盈利元,又能吸引顧客,每件服裝應(yīng)降價(jià)多少元?
【答案】(1);(2)每件應(yīng)降低元時(shí),商場(chǎng)每天盈利元.
【解析】
(1)一件服裝每降價(jià)1元,每天可多售出2件,則設(shè)每件降價(jià)x元時(shí),銷(xiāo)售量為:20+2x,每件盈利:(40﹣x)元,所以每天盈利為:(40﹣x)(20+2x);
(2)此題首先根據(jù)盈利1200元,列出一元二次方程:(20+2×x)×(40﹣x)=1200,然后解出.要注意x=10應(yīng)舍去,要考慮符合實(shí)際的要求.
解(1)設(shè)每件降低x元,獲得的總利潤(rùn)為y元,則y=(40﹣x)(20+2x)=﹣2x2+60x+800;
(2)當(dāng)y=1200元時(shí),即﹣2x2+60x+800=1200,解得:x1=10,x2=20.
∵進(jìn)行促銷(xiāo)活動(dòng),∴每件應(yīng)降低20元時(shí),商場(chǎng)每天盈利1200元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),經(jīng)過(guò)C作CD⊥AB于點(diǎn)D,CF是⊙O的切線,過(guò)點(diǎn)A作AE⊥CF于E,連接AC.
(1)求證:AE=AD.
(2)若AE=3,CD=4,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù),點(diǎn)在該函數(shù)的圖象上,點(diǎn)到軸、軸的距離分別為、.設(shè),下列結(jié)論中:
①沒(méi)有最大值;②沒(méi)有最小值;③時(shí),隨的增大而增大;
④滿足的點(diǎn)有四個(gè).其中正確結(jié)論的個(gè)數(shù)有( )
A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)與x、y軸分別交于A、B兩點(diǎn),與x、y軸交于C、D兩點(diǎn).
(1)求A、B、C、D的坐標(biāo)(用含k、m的代數(shù)式表示);
(2)若,求的值;
(3)在(2)的前提下,若的面積為27,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)經(jīng)過(guò)點(diǎn)和點(diǎn),交軸于,兩點(diǎn),交軸于,則:①;②無(wú)論取何值,此二次函數(shù)圖象與軸必有兩個(gè)交點(diǎn),函數(shù)圖象截軸所得的線段長(zhǎng)度必大于;③當(dāng)函數(shù)在時(shí),隨的增大而減。虎墚(dāng)時(shí),;⑤若,則.以上說(shuō)法正確的有( )
A. ①②③④⑤ B. ①②④⑤ C. ②③④ D. ①②③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線.
當(dāng)拋物線的頂點(diǎn)在軸上時(shí),求該拋物線的解析式;
不論取何值時(shí),拋物線的頂點(diǎn)始終在一條直線上,求該直線的解析式;
若有兩點(diǎn),且該拋物線與線段始終有交點(diǎn),請(qǐng)直接寫(xiě)出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線y=x與雙曲線y=交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為.
(1)求k的值;
(2)若雙曲線y=上點(diǎn)C的縱坐標(biāo)為3,求△AOC的面積;
(3)在坐標(biāo)軸上有一點(diǎn)M,在直線AB上有一點(diǎn)P,在雙曲線y=上有一點(diǎn)N,若以O(shè)、M、P、N為頂點(diǎn)的四邊形是有一組對(duì)角為60°的菱形,請(qǐng)寫(xiě)出所有滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,BC=3,∠ABC和∠ACB的平分線相交于點(diǎn)O,OE∥AB,OF∥AC,則三角形OEF的周長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,線段AB和射線BM交于點(diǎn)B.
(1)利用尺規(guī)完成以下作圖,并保留作圖痕跡(不寫(xiě)作法)
①在射線BM上作一點(diǎn)C,使AC=AB;
②作∠ABM 的角平分線交AC于D點(diǎn);
③在射線CM上作一點(diǎn)E,使CE=CD,連接DE.
(2)在(1)所作的圖形中,猜想線段BD與DE的數(shù)量關(guān)系,并證明之.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com