如圖1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等邊三角形,E是AB的中點,連接CE并延長交AD于F.

(1)求證:①△AEF≌△BEC;②四邊形BCFD是平行四邊形;

(2)如圖2,將四邊形ACBD折疊,使D與C重合,HK為折痕,求sin∠ACH的值.

 


【考點】等邊三角形的性質(zhì);全等三角形的判定;平行四邊形的判定;翻折變換(折疊問題);解直角三角形.菁優(yōu)網(wǎng)版權所有

【專題】綜合題;壓軸題.

【分析】(1)①在△ABC中,由已知可得∠ABC=60°,從而推得∠BAD=∠ABC=60°.由E為AB的中點,得到AE=BE.又因為∠AEF=∠BEC,所以△AEF≌△BEC.

②在Rt△ABC中,E為AB的中點,則CE=AB,BE=AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC∥BD,又因為∠BAD=∠ABC=60°,所以AD∥BC,即FD∥BC,則四邊形BCFD是平行四邊形.

(2)在Rt△ABC中,設BC=a,則AB=2BC=2a,AD=AB=2a.設AH=x,則HC=HD=AD﹣AH=2a﹣x.在Rt△ABC中,由勾股定理得AC2=3a2

在Rt△ACH中,由勾股定理得AH2+AC2=HC2,即x2+3a2=(2a﹣x)2.解得x=a,即AH=a.求得HC的值后,利用sin∠ACH=AH:HC求值.

【解答】(1)證明:①在△ABC中,∠ACB=90°,∠CAB=30°,

∴∠ABC=60°.

在等邊△ABD中,∠BAD=60°,

∴∠BAD=∠ABC=60°.

∵E為AB的中點,

∴AE=BE.

又∵∠AEF=∠BEC,

∴△AEF≌△BEC.

②在△ABC中,∠ACB=90°,E為AB的中點,

∴CE=AB,BE=AB.

∴CE=AE,

∴∠EAC=∠ECA=30°,

∴∠BCE=∠EBC=60°.

又∵△AEF≌△BEC,

∴∠AFE=∠BCE=60°.

又∵∠D=60°,

∴∠AFE=∠D=60°.

∴FC∥BD.

又∵∠BAD=∠ABC=60°,

∴AD∥BC,即FD∥BC.

∴四邊形BCFD是平行四邊形.

(2)解:∵∠BAD=60°,∠CAB=30°,

∴∠CAH=90°.

在Rt△ABC中,∠CAB=30°,設BC=a,

∴AB=2BC=2a.

∴AD=AB=2a.

設AH=x,則HC=HD=AD﹣AH=2a﹣x,

在Rt△ABC中,AC2=(2a)2﹣a2=3a2,

在Rt△ACH中,AH2+AC2=HC2,即x2+3a2=(2a﹣x)2,

解得x=a,即AH=a.

∴HC=2a﹣x=2a﹣a=a.

∴sin∠ACH==

【點評】本題考查了:

(1)折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等;

(2)全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),勾股定理,平行線的判定和性質(zhì),平行四邊形的判定和性質(zhì),正弦的概念求解.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:


在如圖所示(A,B,C三個區(qū)域)的圖形中隨機地撒一把豆子,豆子落在  區(qū)域的可能性最大(填A或B或C).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


2015年十一國慶長假提前到9月29日,黃金周期間外出旅游更為火爆,若旅游區(qū)的門票為60元/張,某旅游區(qū)的開放時間為每天10小時,并每小時對進入旅游區(qū)的游客人數(shù)進行一次統(tǒng)計,下表是9月30日對進入旅游區(qū)人數(shù)的7次抽樣統(tǒng)計數(shù)據(jù):

記數(shù)的次數(shù)

第1次

第2次

第3次

第4次

第5次

第6次

第7次

每小時進入旅游區(qū)的人數(shù)

318

310

310

286

280

312

284

那么從9月29日至10月5日旅游區(qū)門票收入是多少?( 。

A.900000元 B.129600元 C.191600元 D.162000元

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


分解因式:﹣x2y+6y2x﹣9y3= 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


反比例函數(shù)y=的圖象如圖所示,以下結論正確的是( 。

①常數(shù)m<1;

②y隨x的增大而減。

③若A為x軸上一點,B為反比例函數(shù)上一點,則SABC=;

④若P(x,y)在圖象上,則P′(﹣x,﹣y)也在圖象上.

A.①②③     B.①③④     C.①②③④ D.①④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


計算:﹣2cos60°+(2﹣π)0

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


分式方程=2的解是( 。

A.1       B.﹣1   C.3       D.無解

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


平面直角坐標系xOy中,點A、B分別在函數(shù)y1=(x>0)與y2=﹣(x<0)的圖象上,A、B的橫坐標分別為

a、b.

(1)若AB∥x軸,求△OAB的面積;

(2)若△OAB是以AB為底邊的等腰三角形,且a+b≠0,求ab的值;

(3)作邊長為3的正方形ACDE,使AC∥x軸,點D在點A的左上方,那么,對大于或等于4的任意實數(shù)a,CD邊與函數(shù)y1=(x>0)的圖象都有交點,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


下列式子中為完全平方式的是(   )

A. a2+ab+b2;        B. a2+2a+2;      C. a2-2b+b2;;    D. a2+2a+1;

 

查看答案和解析>>

同步練習冊答案