【題目】已知四邊形ABCD的一組對(duì)邊ADBC的延長(zhǎng)線交于點(diǎn)E.

(1)如圖①,若∠ABC=∠ADC90°,求證:ED·EAEC·EB;

(2)如圖②,若∠ABC120°,cosADC,CD5AB12,△CDE的面積為6,求四邊形ABCD的面積;

(3)如圖③,另一組對(duì)邊ABDC的延長(zhǎng)線相交于點(diǎn)F.cosABCcosADC,CD5,CFEDn,直接寫出AD的長(zhǎng)(用含n的式子表示)

【答案】(1)詳見(jiàn)解析;(2)18 ;(3).

【解析】

試題(1)證明△EAB∽△ECD,根據(jù)相似三角形的性質(zhì)即可得結(jié)論;(2)過(guò)點(diǎn)CCGAD于點(diǎn)D,過(guò)點(diǎn)AAHBC于點(diǎn)H.RtCDG中利用已知條件求得DG、OG的長(zhǎng),再根據(jù)△CDE的面積為6,可求得DE的長(zhǎng),在△ABH中求得BH、AH的長(zhǎng),利用(1)EAB∽△ECD,可求得EH的長(zhǎng),由S四邊形ABCDSAEHSECDSABH即可求得四邊形ABCD的面積;(3)由(1)(2)提供的思路即可求解.

試題解析:

(1)證明:∵∠ADC=90°,

∴∠EDC=90°,

∴∠ABECDE.

又∵∠AEBCED,

∴△EAB∽△ECD

,

ED·EAEC·EB.

(2)過(guò)點(diǎn)CCGAD于點(diǎn)D,過(guò)點(diǎn)AAHBC于點(diǎn)H.

CD=5,cosADC,

DG=3,CG=4.

SCED=6,

ED=3,

EG=6.

AB=12,ABC=120°,則∠BAH=30°,

BH=6,AH=6.

(1)得△ECG∽△EAH,

,

EH=9

S四邊形ABCDSAEHSECDSABH×6×9-6-×6×6=75-18.

(3)CHADH,則CH=4,DH=3.

tanE.AGDF于點(diǎn)G.

設(shè)AD=5a,則DG=3aAG=4a,

FGDFDG=5+n-3a.

CHAD,AGDF,EF

∴△AFG∽△CEH,

,

a,

AD=5a.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB=AC,BDACD,CEABE,BD、CE相交于F,若∠C=30°,DF=2,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=(xm2m與直線yx相交于E,C兩點(diǎn)(點(diǎn)E在點(diǎn)C的左邊),拋物線與x軸交

AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊).ABC的外接圓⊙H與直線y=-x相交于點(diǎn)D

若拋物線與y軸交點(diǎn)坐標(biāo)為(0,2),求m的值;

求證:⊙H與直線y=1相切;

DE=2EC,求⊙H的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017重慶A卷第11題)如圖,小王在長(zhǎng)江邊某瞭望臺(tái)D處,測(cè)得江面上的漁船A的俯角為40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡長(zhǎng)BC=10米,則此時(shí)AB的長(zhǎng)約為( 。▍⒖紨(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).

A. 5.1 B. 6.3 C. 7.1 D. 9.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn),試分別根據(jù)下列條件,求出點(diǎn)的坐標(biāo)。

1)點(diǎn)軸上;

2)點(diǎn)橫坐標(biāo)比縱坐標(biāo)大3;

3)點(diǎn)在過(guò)點(diǎn),且與軸平行的直線上。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)閱讀下列材料:

我們可以通過(guò)以下方法求代數(shù)式x2+6x+5的最小值.

x2+6x+5=x2+2x3+32﹣32+5=(x+3)2﹣4,

(x+3)20

∴當(dāng)x=﹣3時(shí),x2+6x+5有最小值﹣4.

請(qǐng)根據(jù)上述方法,解答下列問(wèn)題:

(Ⅰ)x2+4x﹣1=x2+2x2+22﹣22﹣1=(x+a)2+b,則ab的值是_____;

(Ⅱ)求證:無(wú)論x取何值,代數(shù)式x2+2x+7的值都是正數(shù);

(Ⅲ)若代數(shù)式2x2+kx+7的最小值為2,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為A(0,a),B(b,a),且a、b滿足(a﹣2)2+|b﹣4|=0,現(xiàn)同時(shí)將點(diǎn)A,B分別向下平移2個(gè)單位,再向左平移1個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD,AB.

(1)求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABCD;

(2)在y軸上是否存在一點(diǎn)M,連接MC,MD,使SMCD=S四邊形ABDC?若存在這樣一點(diǎn),求出點(diǎn)M的坐標(biāo),若不存在,試說(shuō)明理由;

(3)點(diǎn)P是直線BD上的一個(gè)動(dòng)點(diǎn),連接PA,PO,當(dāng)點(diǎn)PBD上移動(dòng)時(shí)(不與B,D重合),直接寫出∠BAP、DOP、APO之間滿足的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠ABC ACB ,BD 、CD 分別平分ABC 的內(nèi)角 ABC 、外角 ACP ,BE平分外角 MBC DC 的延長(zhǎng)線于點(diǎn) E ,以下結(jié)論:①∠BDE BAC ;② DBBE ;③∠BDC ACB 90 ;④∠BAC 2BEC 180 .其中正確的結(jié)論有(

A.1 個(gè)B.2 個(gè)C.3 個(gè)D.4 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A、B、C在數(shù)軸上分別表示的數(shù)為-102,8,點(diǎn)DBC中點(diǎn),點(diǎn)EAD中點(diǎn).

(1)求EB的長(zhǎng);

(2)若動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以1cm/s的速度向點(diǎn)C運(yùn)動(dòng),達(dá)到點(diǎn)C停止運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),以2cm/s的速度向點(diǎn)A運(yùn)動(dòng),到達(dá)點(diǎn)A停止運(yùn)動(dòng),若運(yùn)動(dòng)時(shí)間為ts,當(dāng)t為何值時(shí),PQ=3cm?

(3)點(diǎn)AB,C開始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A1cm/s的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以4cm/s9cm/s的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過(guò)后,若點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離表示為AB,請(qǐng)問(wèn):AB-BC的值是否隨時(shí)間t的變化而變化?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其常數(shù)值.

查看答案和解析>>

同步練習(xí)冊(cè)答案