【題目】如圖,在等腰直角中,,點(diǎn)DBC邊上,過點(diǎn)D于點(diǎn)E,連接BEAD于點(diǎn)F.

(1)求證:;

(2)若點(diǎn)DBC的中點(diǎn),BC=4,求BE的長.

【答案】(1)證明見解析;(2)BE=.

【解析】

(1)先根據(jù)兩角對應(yīng)相等,兩三角形相似證明DEC∽△ABC,再根據(jù)兩邊對應(yīng)成比例且夾角相等證明ADC∽△BEC;

(2)先根據(jù)勾股定理求出AD的長,由題意得到CED為等腰直角三角形,再根據(jù)相似三角形的性質(zhì)求BE的長.

解:(1)∵∠C=∠C45°,∠ABC=∠DEC90°,

∴△DEC∽△ABC

∵∠C=∠C,

∴△ADC∽△BEC

(2)∵在等腰直角△ABC中∠ABC90°,點(diǎn)DBC的中點(diǎn),BC2,

ABBC4,BD2

∴在RtABD中,=

∵∠C45°DEAC,

∴可得△CED為等腰直角三角形.

CD=CE

∵△ADC∽△BEC

.

BE=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,每一圖中有若干個(gè)大小不同的菱形,第1幅圖中有1個(gè)菱形,第2幅圖中有3個(gè)菱形,第3幅圖中有5個(gè)菱形,如果第n幅圖中有2019個(gè)菱形,則n_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形ABC的邊長為cm,在AC,BC邊上各取一點(diǎn)EF,使得AE=CF,連接AF,BE相交于點(diǎn)P.(1)則∠APB=______度;(2)當(dāng)點(diǎn)E從點(diǎn)A運(yùn)動到點(diǎn)C時(shí),則動點(diǎn)P經(jīng)過的路徑長為________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c經(jīng)過A﹣2,﹣4),O00),B20)三點(diǎn).

1)求拋物線y=ax2+bx+c的解析式;

2)若點(diǎn)M是該拋物線對稱軸上的一點(diǎn),求AM+OM的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB兩個(gè)黑布袋,A布袋中有四個(gè)除標(biāo)號外完全相同的小球,小球上分別標(biāo)有數(shù)字0,1,2,3,B布袋中有三個(gè)除標(biāo)號外完全相同的小球,小球上分別標(biāo)有數(shù)字0,12.小明先從A布袋中隨機(jī)取出一個(gè)小球,用m表示取出的球上標(biāo)有的數(shù)字,再從B布袋中隨機(jī)取出一個(gè)小球,用n表示取出的球上標(biāo)有的數(shù)字.

1)若用(m,n)表示小明取球時(shí)mn 的對應(yīng)值,請畫出樹狀圖并寫出(m,n)的所有取值;

2)求關(guān)于x的一元二次方程有實(shí)數(shù)根的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)都在小方格的格點(diǎn)上.

1)點(diǎn)A的坐標(biāo)是 ;點(diǎn)C的坐標(biāo)是 ;

2)以原點(diǎn)O為位似中心,將△ABC縮小,使變換后得到的△A1B1C1與△ABC對應(yīng)邊的比為12,請?jiān)诰W(wǎng)格中畫出△A1B1C1

3)△A1B1C1的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖坐標(biāo)系中,RtBAC的直角頂點(diǎn)Ay軸上,頂點(diǎn)Bx軸上,且OA4,OB6,雙曲線y經(jīng)過點(diǎn)和斜邊BC的中點(diǎn)D,則k_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)yx2bxc的圖象,其頂點(diǎn)坐標(biāo)為M(1,-4)

(1)求出圖象與x軸的交點(diǎn)A、B的坐標(biāo);

(2)在二次函數(shù)的圖象上是否存在點(diǎn)P,使SPABSMAB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)的直徑的延長線上,點(diǎn)上,且AC=CD,∠ACD=120°.

1)求證:的切線;

2)若的半徑為2,求圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊答案