【題目】平面直角坐標(biāo)系中,已知A(1,2)、B(3,0).若在坐標(biāo)軸上取點C,使△ABC為等腰三角形,則滿足條件的點C的個數(shù)是( )
A.5B.6C.7D.8
【答案】C
【解析】
根據(jù)等腰三角形腰的情況分類討論,①若AB=AC時,以A為圓心,AB的長為半徑畫圓,先求出AB,根據(jù)直線與圓的位置關(guān)系,判定出此時圓與坐標(biāo)軸的位置關(guān)系,即可得出結(jié)論;②若BA=BC時,以B為圓心,AB的長為半徑畫圓,根據(jù)直線與圓的位置關(guān)系,判定出此時圓與坐標(biāo)軸的位置關(guān)系,即可得出結(jié)論;③若AC=BC時,作AB的垂直平分線,觀察坐標(biāo)系即可得出結(jié)論.
解:分三種情況:
①若AB=AC時,以A為圓心,AB的長為半徑畫圓,如下圖所示
根據(jù)平面直角坐標(biāo)系中任意兩點的距離公式:AB=
而點A到x軸的距離為2<,圓與x軸相交
∴此圓與x軸有兩個交點(其中一個為點B),即此時在x軸上有1個符合條件的點C
點A到y軸的距離為1<,圓與y軸相交
∴此圓與y軸有兩個交點,即此時在y軸上有2個符合條件的點C
即若AB=AC時,滿足條件的C有3個;
②若BA=BC時,以B為圓心,AB的長為半徑畫圓,如下圖所示
點B到x軸的距離為0<,圓與x軸相交
∴此圓與x軸有兩個交點,即此時在x軸上有2個符合條件的點C
點B到y軸的距離為3>,圓與y軸相離
∴此圓與y軸無交點,即此時在y軸上不存在點C
即若BA=BC時,滿足條件的C有2個;
③若AC=BC時,作AB的垂直平分線,如下圖所示,與坐標(biāo)軸有2個交點,根據(jù)垂直平分線的性質(zhì),即若AC=BC時,滿足條件的C有2個;
綜上所述:滿足條件的點C的個數(shù)是3+2+2=7個
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為的直徑,點C和點G是上的兩點,過點C作BG的垂線交BG的延長線于點D延長DC交A的延長線于點E,連接BC,交OD于點F,BC平分∠ABD.
(1)求證:CD是的切線;
(2)若,探索線段OF與FD的數(shù)量關(guān)系;
(3)連接AD,若,,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】11月21日,“中國流動科技館”榆林市第二輪巡展啟動儀式在榆陽區(qū)青少年校外活動中心盛大舉行,此次巡展以“體驗科學(xué)”為主題.榆林市某中學(xué)舉行了“科普知識”競賽,為了解此次“科普知識”競賽成績的情況,隨機(jī)抽取了部分參賽學(xué)生的成績,整理并制作出如下的不完整的統(tǒng)計表和統(tǒng)計圖,如圖所示.請根據(jù)圖表信息解答以下問題.
(1)表中a= ;一共抽取了 個參賽學(xué)生的成績;
(2)補全頻數(shù)分布直方圖;
(3)計算扇形統(tǒng)計圖中“B”與“C”對應(yīng)的圓心角度數(shù);
(4)若成績在80分以上(包括80分)的為“優(yōu)”等,所抽取學(xué)生成績?yōu)?/span>“優(yōu)”的占所抽取學(xué)生的百分比是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“今有邑,東西七里,南北九里,各開中門,出東門一十五里有木,問:出南門幾何步而見木?”這段話摘自《九章算術(shù)》.意思是說:如圖,矩形城池ABCD,東邊城墻AB長9里,南邊城墻AD長7里,東門點E、南門點F分別是AB、AD中點,EG⊥AB,FH⊥AD,EG=15里,HG經(jīng)過A點,則FH=( )
A.1.2 里B.1.5 里C.1.05 里D.1.02 里
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的學(xué)習(xí)材料:
我們知道,一般情況下式子與“”是不相等的(m,n均為整數(shù)),但當(dāng)m,n取某些特定整數(shù)時,可以使這兩個式子相等,我們把使“=”成立的數(shù)對“m,n”叫做“好數(shù)對”,記作[m,n],例如,當(dāng)m=n=0時,有=成立,則數(shù)對“0,0”就是一對“好數(shù)對”,記作[0,0]
解答下列問題:
(1)通過計算,判斷數(shù)對“3,4”是否是“好數(shù)對”;
(2)求“好數(shù)對”[x,﹣32]中x的值;
(3)請再寫出一對上述未出現(xiàn)的“好數(shù)對”[ , ];
(4)對于“好數(shù)對[a,b],如果a=9k(k為整數(shù)),則b= (用含k的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=,∠A=120°,點P,Q,K分別為線段BC,CD,BD上的任意一點,則PK+QK的最小值為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖拋物線的圖象交x軸于A(﹣2,0)和點B,交y軸負(fù)半軸于點C,且OB=OC,下列結(jié)論:
①2b﹣c=2;②a=;③ac=b﹣1;④>0
其中正確的個數(shù)有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,∠BAC=60°,D為BC邊上一點,(不與點B、C)重合,將線段AD繞點A逆時針旋轉(zhuǎn)60°得到AE,連接EC,則∠ACE的度數(shù)是__________,線段AC,CD,CE之間的數(shù)量關(guān)系是_______________.
(2)2,在△ABC中,AB=AC,∠BAC=90°,D為BC邊上一點(不與點B、C重合),將線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,連接EC,請寫出∠ACE的度數(shù)及線段AD,BD,CD之間的數(shù)量關(guān)系,并說明理由.
(3)如圖3,在Rt△DBC中,DB=3,DC=5,∠BDC=90°,若點A滿足AB=AC,∠BAC=90°,請直接寫出線段AD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一轉(zhuǎn)盤被等分成三個扇形,上面分別標(biāo)有-1,1,2中的一個數(shù),指針固定,轉(zhuǎn)動轉(zhuǎn)盤后任其自由停止,這時某個扇形會恰好停在指針?biāo)傅奈恢茫⑾鄳?yīng)得到這個扇形上的數(shù)( 若指針恰好指在等分線上,當(dāng)做指向右邊的扇形).若轉(zhuǎn)動一次轉(zhuǎn)盤,將所得的數(shù)作為k,則使反比例函數(shù)的圖象在第一、三象限的概率是多少?若小靜和小宇進(jìn)行游戲,每人各轉(zhuǎn)動兩次轉(zhuǎn)盤,若兩次所得數(shù)的積為正數(shù),則小靜贏,若兩次所得數(shù)的積為負(fù)數(shù),則小宇贏.這是個公平的游戲嗎?請說明理由.(借助畫樹狀圖或列表的方法)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com