【題目】閱讀下面的學(xué)習(xí)材料:
我們知道,一般情況下式子與“”是不相等的(m,n均為整數(shù)),但當(dāng)m,n取某些特定整數(shù)時(shí),可以使這兩個(gè)式子相等,我們把使“=”成立的數(shù)對(duì)“m,n”叫做“好數(shù)對(duì)”,記作[m,n],例如,當(dāng)m=n=0時(shí),有=成立,則數(shù)對(duì)“0,0”就是一對(duì)“好數(shù)對(duì)”,記作[0,0]
解答下列問題:
(1)通過計(jì)算,判斷數(shù)對(duì)“3,4”是否是“好數(shù)對(duì)”;
(2)求“好數(shù)對(duì)”[x,﹣32]中x的值;
(3)請(qǐng)?jiān)賹懗鲆粚?duì)上述未出現(xiàn)的“好數(shù)對(duì)”[ , ];
(4)對(duì)于“好數(shù)對(duì)[a,b],如果a=9k(k為整數(shù)),則b= (用含k的代數(shù)式表示).
【答案】(1)數(shù)對(duì)“3,4”不是“好數(shù)對(duì)”,見解析;(2)x=18;(3)[9,﹣16];(4)﹣16k
【解析】
(1)令m=3,n=4,代入驗(yàn)證,判斷出“3,4”是否是“好數(shù)對(duì)”即可.
(2)首先根據(jù)數(shù)對(duì)“x,﹣32”是“好數(shù)對(duì)”,可得:=;然后根據(jù)解一元一次方程的方法,求出x的值是多少即可.
(3)設(shè)[a,b]是一對(duì)“好數(shù)對(duì)”,則a,b應(yīng)是滿足16a+9b=0的整數(shù),不能是[0,0]和[18,﹣32].
(4)設(shè)[a,b]是一對(duì)“好數(shù)對(duì)”,則a,b應(yīng)是滿足16a+9b=0的整數(shù),如果a=9k(k為整數(shù)),則b=﹣16k.
解:(1)令m=3,n=4,
則,
∵1≠2,
∴≠,
故數(shù)對(duì)“3,4”不是“好數(shù)對(duì)”.
(2)∵數(shù)對(duì)“x,﹣32”是“好數(shù)對(duì)”,
∴,
∴3(x﹣32)=7x﹣168,
解得x=18.
(3)設(shè)[a,b]是一對(duì)“好數(shù)對(duì)”,
則,
∴16a+9b=0,
令a=9,則b=﹣16,
∴寫出一對(duì)上述未出現(xiàn)的“好數(shù)對(duì)”[9,﹣16].(答案不唯一)
(4)設(shè)[a,b]是一對(duì)“好數(shù)對(duì)”,
則a,b應(yīng)是滿足16a+9b=0的整數(shù),
如果a=9k(k為整數(shù)),
則b=﹣16k.
故答案為:9、﹣16、﹣16k.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD⊥AB,垂足為D. 點(diǎn)E在BC上,EF⊥AB,垂足為F,∠1=∠2.
(1)試說明DG∥BC的理由;
(2)如果∠B=54°,且∠ACD=35°,求的∠3度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A是直線AM與⊙O的交點(diǎn),點(diǎn)B在⊙O上,BD⊥AM,垂足為D,BD與⊙O交于點(diǎn)C,OC平分∠AOB,∠B=60°.
(1)求證:AM是⊙O的切線;
(2)若⊙O的半徑為4,求圖中陰影部分的面積(結(jié)果保留π和根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC內(nèi)接于圓O,且AB=AC,圓O的半徑等于6cm,O點(diǎn)到BC距離等于2cm,則AB長(zhǎng)為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將正方形ABCD按圖1所示置于平面直角坐標(biāo)系中,AD邊與x軸重合,頂點(diǎn)B,C位于x軸上方,將直線l:y=x﹣3沿x軸向左以每秒1個(gè)單位長(zhǎng)度的速度平移,在平移的過程中,該直線被正方形ABCD的邊所截得的線段長(zhǎng)為m,平移的時(shí)間為t秒,m與t的函數(shù)圖象如圖2所示,則a,b的值分別是( 。
A.6,B.6,C.7,7D.7,5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,已知A(1,2)、B(3,0).若在坐標(biāo)軸上取點(diǎn)C,使△ABC為等腰三角形,則滿足條件的點(diǎn)C的個(gè)數(shù)是( )
A.5B.6C.7D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為鼓勵(lì)大學(xué)畢業(yè)生自主創(chuàng)業(yè),某市政府出臺(tái)了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價(jià)提供產(chǎn)品給大學(xué)畢業(yè)生自主銷售,成本價(jià)與出廠價(jià)之間的差價(jià)由政府承擔(dān).李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價(jià)為每件元,出廠價(jià)為每件元,每月銷售量(件)與銷售單價(jià)(元)之間的關(guān)系近似滿足一次函數(shù):.
(1)李明在開始創(chuàng)業(yè)的第一個(gè)月將銷售單價(jià)定為元,那么政府這個(gè)月為他承擔(dān)的總差價(jià)為多少元?
(2)設(shè)李明獲得的利潤為(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤?
(3)物價(jià)部門規(guī)定,這種節(jié)能燈的銷售單價(jià)不得高于元.如果李明想要每月獲得的利潤不低于元,那么政府為他承擔(dān)的總差價(jià)最少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某初中學(xué)校餐廳為了解學(xué)生對(duì)早餐的要求,隨即抽樣調(diào)查了該校的部分學(xué)生,并根據(jù)其中兩個(gè)單選問題的調(diào)查結(jié)果,繪制了如下尚不完整的統(tǒng)計(jì)圖表.
學(xué)生能接受的早餐價(jià)格統(tǒng)計(jì)表
價(jià)格分組(單位:元) | 頻數(shù) | 頻率 |
0<x≤2 | 60 | 0.15 |
2<x≤4 | 180 | c |
4<x≤6 | 92 | 0.23 |
6<x≤8 | a | 0.12 |
x>8 | 20 | 0.05 |
合計(jì) | b | 1 |
根據(jù)以上信息解答下列問題:
(1)統(tǒng)計(jì)表中,a= ,b= ,c= .
(2)扇形統(tǒng)計(jì)圖中,m的值為 ,“甜”所對(duì)應(yīng)的圓心角的度數(shù)是 .
(3)該餐廳計(jì)劃每天提供早餐2000份,其中咸味大約準(zhǔn)備多少份較好?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C(0,﹣3),對(duì)稱軸為x=1,點(diǎn)D與C關(guān)于拋物線的對(duì)稱軸對(duì)稱.
(1)求拋物線的解析式及點(diǎn)D的坐標(biāo);
(2)點(diǎn)P是拋物線上的一點(diǎn),當(dāng)△ABP的面積是8時(shí),求出點(diǎn)P的坐標(biāo);
(3)點(diǎn)M為直線AD下方拋物線上一動(dòng)點(diǎn),設(shè)點(diǎn)M的橫坐標(biāo)為m,當(dāng)m為何值時(shí),△ADM的面積最大?并求出這個(gè)最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com