【題目】如圖1,將正方形ABCD按圖1所示置于平面直角坐標(biāo)系中,AD邊與x軸重合,頂點(diǎn)B,C位于x軸上方,將直線lyx3沿x軸向左以每秒1個單位長度的速度平移,在平移的過程中,該直線被正方形ABCD的邊所截得的線段長為m,平移的時間為t秒,mt的函數(shù)圖象如圖2所示,則a,b的值分別是( 。

A.6,B.6,C.7,7D.7,5

【答案】D

【解析】

先根據(jù)△OEF為等腰直角三角形,可得直線l與直線BD平行,即直線l沿x軸的負(fù)方向平移時,同時經(jīng)過BD兩點(diǎn),再根據(jù)BD的長即可得到b的值.

解:如圖1,直線yx3中,令y0,得x3;令x0,得y=﹣3

即直線yx3與坐標(biāo)軸圍成的△OEF為等腰直角三角形,

∴直線l與直線BD平行,即直線l沿x軸的負(fù)方向平移時,同時經(jīng)過BD兩點(diǎn),

由圖2可得,t2時,直線l經(jīng)過點(diǎn)A,

AO32×11,

A1,0),

由圖2可得,t12時,直線l經(jīng)過點(diǎn)C,

∴當(dāng)t+27時,直線l經(jīng)過B,D兩點(diǎn),

AD=(72×15,

∴等腰RtABD中,BD ,

即當(dāng)a7時,b

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線C1yax2+bx1經(jīng)過點(diǎn)A(2,1)和點(diǎn)B(1,﹣1),拋物線C2y2x2+x+1,動直線xt與拋物線C1交于點(diǎn)N,與拋物線C2交于點(diǎn)M

1)求拋物線C1的表達(dá)式;

2)直接用含t的代數(shù)式表達(dá)線段MN的長;

3)當(dāng)△AMN是以MN為直角邊的等腰直角三角形時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請閱讀下列材料,并完成相應(yīng)的任務(wù).

人類會作圓并且真正了解圓的性質(zhì)是在2000多年前,由我國的墨子給出圓的概念:“一中同長也.”.意思說,圓有一個圓心,圓心到圓周的長都相等.這個定義比希臘數(shù)學(xué)家歐幾里得給圓下的定義要早100年.與圓有關(guān)的定理有很多,弦切角定理就是其中之一.

我們把頂點(diǎn)在圓上,一邊和圓相交,另一邊和圓相切的角叫做弦切角.

弦切角定理:弦切角的度數(shù)等于它所夾弧所對的圓周角度數(shù).

下面是弦切角定理的部分證明過程:

證明:如圖①,AB與⊙O相切于點(diǎn)A.當(dāng)圓心O在弦AC上時,容易得到∠CAB90°,所以弦切角∠BAC的度數(shù)等于它所夾半圓所對的圓周角度數(shù).

如圖②,AB與⊙O相切于點(diǎn)A,當(dāng)圓心O在∠BAC的內(nèi)部時,過點(diǎn)A作直徑AD交⊙O于點(diǎn)D,在上任取一點(diǎn)E,連接EC,EDEA,則∠CED=∠CAD

任務(wù):

(1)請按照上面的證明思路,寫出該證明的剩余部分;

(2)如圖③,AB與⊙O相切于點(diǎn)A.當(dāng)圓心O在∠BAC的外部時,請寫出弦切角定理的證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCD的頂點(diǎn)A、C的坐標(biāo)分別為(4,6)、(5,4),且AB平行于x軸,將矩形ABCD向左平移,得到矩形ABCD′.若點(diǎn)A′、C′同時落在函數(shù)的圖象上,則k的值為( 。

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,點(diǎn)D在邊BC上,AEBC,BEAD、AC分別相交于點(diǎn)F、G,

1)求證:△CAD∽△CBG;

2)聯(lián)結(jié)DG,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的學(xué)習(xí)材料:

我們知道,一般情況下式子與“”是不相等的(m,n均為整數(shù)),但當(dāng)mn取某些特定整數(shù)時,可以使這兩個式子相等,我們把使“=”成立的數(shù)對“m,n”叫做“好數(shù)對”,記作[m,n],例如,當(dāng)mn0時,有=成立,則數(shù)對“0,0”就是一對“好數(shù)對”,記作[00]

解答下列問題:

1)通過計(jì)算,判斷數(shù)對“3,4”是否是“好數(shù)對”;

2)求“好數(shù)對”[x,﹣32]x的值;

3)請?jiān)賹懗鲆粚ι鲜鑫闯霈F(xiàn)的“好數(shù)對”[   ,   ];

4)對于“好數(shù)對[a,b],如果a9kk為整數(shù)),則b   (用含k的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將正方形ABCD折疊,使點(diǎn)ACD邊上的點(diǎn)H重合(H不與C,D重合),折痕交AD于點(diǎn)E,交BC于點(diǎn)F,邊AB折疊后與邊BC交于點(diǎn)G.設(shè)正方形ABCD周長為m,△CHG周長為n,則為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是菱形,點(diǎn)A的坐標(biāo)為(0,),分別以A,B為圓心,大于AB的長為半徑作弧,兩弧交于點(diǎn)E,F,直線EF恰好經(jīng)過點(diǎn)D,則點(diǎn)D的坐標(biāo)為( 。

A. 2,2B. 2,C. ,2D. +1,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y的圖象上有一動點(diǎn)A,連接AO并延長交圖象的另一支于點(diǎn)B,在第二象限內(nèi)有一點(diǎn)C,滿足ACBC,當(dāng)點(diǎn)A運(yùn)動時,點(diǎn)C始終在函數(shù)y的圖象上運(yùn)動,tanCAB2,則k_____

查看答案和解析>>

同步練習(xí)冊答案