【題目】如圖,在4×4的正方形網(wǎng)格中,△ABC和△DEF的頂點(diǎn)都在邊長(zhǎng)為1的正方形的頂點(diǎn)上.
(1)填空:∠ABC=__________度,BC=_________;
(2)求證:∠C=∠E.
【答案】(1) 135°,2;(2)證明見解析.
【解析】
(1)根據(jù)正方形的對(duì)角線可得∠ABC的補(bǔ)角等于45°,即可求出∠ABC=135°,根據(jù)BC是正方形的對(duì)角線,利用勾股定理進(jìn)行計(jì)算即可.
(2)先根據(jù)勾股定理計(jì)算出網(wǎng)格中三角形的各個(gè)邊長(zhǎng),然后求出各邊比值,根據(jù)三邊對(duì)應(yīng)成比例兩三角形相似可得△ABD∽△DCB,然后再可得
(1) 135° 2
(2) 由圖知,AB=2,BC=2,AC=2,DF=,EF=2,DE=,
∴,,,
∴,
∴△DEF∽△ACB,
∴∠C=∠E.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某加工廠以每噸3000元的價(jià)格購進(jìn)50噸原料進(jìn)行加工,若進(jìn)行粗加工,每噸加工費(fèi)用為600元,需天,每噸售價(jià)4000元;若進(jìn)行精加工,每噸加工費(fèi)為900元,需天,每噸售價(jià)4500元,現(xiàn)將這50噸原料全部加工完。(兩種加工方式不能同時(shí)進(jìn)行)
(1)設(shè)其中粗加工x噸,獲利y元,求y與x的函數(shù)關(guān)系式(不要求寫自變量的范圍);
(2)如果必須在20天內(nèi)完成,如何安排生產(chǎn)才能獲得最大的利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c的頂點(diǎn)為D(–1,2),與x軸的一個(gè)交點(diǎn)A在點(diǎn)(–3,0)和(–2,0)之間,其部分圖象如下圖,則以下結(jié)論:①b2–4ac<0;②a+b+c<0;③c–a=2;④方程ax2+bx+c–2=0有兩個(gè)相等的實(shí)數(shù)根.其中正確結(jié)論的個(gè)數(shù)為( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB=AC.如圖,D、E為∠BAC的平分線上的兩點(diǎn),連接BD、CD、BE、CE;如圖4, D、E、F為∠BAC的平分線上的三點(diǎn),連接BD、CD、BE、CE、BF、CF;如圖5, D、E、F、G為∠BAC的平分線上的四點(diǎn),連接BD、CD、BE、CE、BF、CF、BG、CG……依此規(guī)律,第17個(gè)圖形中有全等三角形的對(duì)數(shù)是( 。
A.17B.54C.153D.171
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,已知△ABC為等邊三角形,點(diǎn)D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點(diǎn)F。
(1)求證:△ABE≌△CAD;(2)求∠BFD的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,按以下步驟作圖:①分別以 B,C 為圓心,以大于BC 的長(zhǎng)為半徑作弧,兩弧相交于兩點(diǎn) M,N;②作直線 MN 交 AB 于點(diǎn) D,連接 CD.若 CD=AC,∠A=50°,則∠ACB 的度數(shù)為
A.90°B.95°C.105°D.110°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,對(duì)角線AC,BD相交于點(diǎn)O,下列結(jié)論中:
①∠ABC=∠ADC;
②AC與BD相互平分;
③AC,BD分別平分四邊形ABCD的兩組對(duì)角;
④四邊形ABCD的面積S=ACBD.
正確的是 (填寫所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,,點(diǎn)從開始沿折線以的速度運(yùn)動(dòng),點(diǎn)從開始沿邊以的速度移動(dòng),如果點(diǎn)、分別從、同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為,當(dāng)________時(shí),四邊形也為矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小聰遇到這樣一個(gè)有關(guān)角平分線的問題:如圖1,在中,,平分,,,求的長(zhǎng).
小聰思考:因?yàn)?/span>平分,所以可在邊上取點(diǎn),使,連接.這樣很容易得到,經(jīng)過推理能使問題得到解決(如圖2).
請(qǐng)回答:(1)是 三角形.
(2)的長(zhǎng)為 .
參考小聰思考問題的方法,解決問題:
(3)如圖3,已知中,,平分,.求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com