【題目】如圖,在的正方形網(wǎng)格中,每個小正方形的邊長均為1.,,,均在格點(diǎn)上,完成下列問題:
(1)四邊形周長是 ;
(2)四邊形面積是 ;
(3)求的度數(shù).
【答案】(1);(2);(3)∠DAB=90°.
【解析】
(1)借助網(wǎng)格構(gòu)建直角三角形,利用勾股定理即可分別求出AD、DC、BC、AB,從而求得四邊形ABCD的周長;
(2)四邊形ABCD的面積等于正方形面積減去四個小三角形面積,據(jù)此可得;
(3)求得BD的長度,借助勾股定理逆定理可得△ABD為直角三角形,∠DAB=90°.
解:(1)如下圖,由網(wǎng)格可知△AED為直角三角形,
根據(jù)勾股定理,
同理可得,,
故四邊形周長=.
故答案為:;
(2)如下圖,連接BG
=
=.
故答案為:;
(3)連接BD,根據(jù)勾股定理
,,,
∵,
∴△ABD為直角三角形,∠DAB=90°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一副直角三角尺如圖①疊放,現(xiàn)將45°的三角尺ADE固定不動,將含30°的三角尺ABC繞頂點(diǎn)A順時(shí)針轉(zhuǎn)動,要求兩塊三角尺的一組邊互相平行.如圖②,當(dāng)∠BAD=15°時(shí),有一組邊BC∥DE,請?jiān)賹懗鰞蓚符合要求的∠BAD(0°<∠BAD<180°)的度數(shù)_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以3cm/s的速度由點(diǎn)B向C點(diǎn)運(yùn)動,同時(shí),點(diǎn)Q在線段CA上由點(diǎn)C向A點(diǎn)運(yùn)動.
(1)若點(diǎn)Q的運(yùn)動速度與點(diǎn)P的運(yùn)動速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請說明理由.
(2)若點(diǎn)Q的運(yùn)動速度與點(diǎn)P的運(yùn)動速度不相等,當(dāng)點(diǎn)Q的運(yùn)動速度為多少時(shí),能夠使△BPD與△CQP全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,△OBC的頂點(diǎn)分別為O(0,0)、B(3,-1)、C(2,1).
(1)以點(diǎn)O(0,0)為位似中心,按比例尺2: 1在位似中心的異側(cè)將△OBC放大為,放大后點(diǎn)B、C兩點(diǎn)的對應(yīng)點(diǎn)分別為、,畫出,并寫出點(diǎn)為、的坐標(biāo)。
(2)在(1)中,若點(diǎn)M(x,y)為線段BC上任一點(diǎn),寫出變化后點(diǎn)M的對應(yīng)點(diǎn)的坐標(biāo)。(3)求的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤被平均分成3個扇形,分別標(biāo)有1,2,3三個數(shù)字.小王和小李各轉(zhuǎn)動一次轉(zhuǎn)盤為一次游戲,當(dāng)每次轉(zhuǎn)盤停止后,指針?biāo)干刃蝺?nèi)的數(shù)為各自所得的數(shù),一次游戲結(jié)束后得到一組數(shù)(若指針指在分界線時(shí)重轉(zhuǎn)).
(1)請你用樹狀圖或列表的方法表示出每次游戲可能出現(xiàn)的所有結(jié)果;
(2)求每次游戲后得到的一組數(shù)恰好是方程x2﹣4x+3=0的解的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知BD、CE是△ABC的兩條高,直線BD、CE相交于點(diǎn)H.
(1)如圖,①在圖中找出與∠DBA相等的角,并說明理由;
②若∠BAC=100°,求∠DHE的度數(shù);
(2)若△ABC中,∠A=50°,直接寫出∠DHE的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CB=CA,∠ACB=90°,點(diǎn)D在邊BC上(與B,C不重合),四邊形ADEF為正方形,過點(diǎn)F作FG⊥CA,交CA的延長線于點(diǎn)G,連接FB,交DE于點(diǎn)Q,給出以下結(jié)論:①AC=FG;②S△FAB∶S四邊形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正確結(jié)論的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,有若干個整數(shù)點(diǎn),其順序按圖中“→”方向排列,如(0,1),(0,2),(1,2),(1,3),(0,3),(﹣1,3)…,根據(jù)這個規(guī)律探索可得,第90個點(diǎn)的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為加強(qiáng)中小學(xué)生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識競賽,為獎勵在競賽中表現(xiàn)優(yōu)異的班級,學(xué)校準(zhǔn)備從體育用品商場一次性購買若干個足球和籃球(每個足球的價(jià)格相同,每個籃球的價(jià)格相同),購買1個足球和1個籃球共需159元;足球單價(jià)是籃球單價(jià)的2倍少9元.
(1)求足球和籃球的單價(jià)各是多少元?
(2)根據(jù)學(xué)校實(shí)際情況,需一次性購買足球和籃球共20個,但要求購買足球和籃球的總費(fèi)用不超過1550元,學(xué)校最多可以購買多少個足球?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com