【題目】如圖所示,已知:在菱形ABCD中,E、F分別是BC,CD上的點,且CE=CF.
(1)求證:△ABE≌△ADF;
(2)過點C作CG∥EA交AF于點H,交AD于點G,若∠BAE=25°,∠BCD=130°,求∠AHC的度數(shù).
【答案】(1)見解析;(2)100°
【解析】
(1)首先利用菱形的性質(zhì)和CE=CF得出BE=DF,進而得出△ABE≌△ADF;
(2)利用全等三角形的性質(zhì)得出∠BAE=∠DAF=25°,進而得出∠EAF的度數(shù),進而得出∠AHC的度數(shù).
(1)證明:在菱形ABCD中,BC=CD=AB=AD,∠B=∠D(菱形的性質(zhì)),
∵CE=CF,
∴BCCE=CDCF,
∴BE=DF,
在△ABE與△ADF中
,
∴△ABE≌△ADF(SAS);
(2)∵△ABE≌△ADF(已證),∠BAE=25°,
∴∠BAE=∠DAF=25°,
在菱形ABCD中
∠BAD=∠BCD=130°(菱形對角相等),
∴∠EAF=∠BAD∠BAE∠DAF=130°25°25°=80°,
∵AE∥CG,
∴∠EAF+∠AHC=180°,
∴∠AHC=180°∠EAF=180°80°=100°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點A在y軸正半軸上,邊AB、OA(AB>OA)的長分別是方程x2﹣11x+24=0的兩個根,D是AB上的點,且滿足.
(1)矩形OABC的面積是 ,周長是 .
(2)求直線OD的解析式;
(3)點P是射線OD上的一個動點,當(dāng)△PAD是等腰三角形時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,經(jīng)過點A(0,﹣4)的拋物線y=x2+bx+c與x軸相交于點B(﹣1,0)和C,O為坐標(biāo)原點.
(1)求拋物線的解析式;
(2)將拋物線y=x2+bx+c向上平移7個單位長度,再向左平移m(m>0)個單位長度,得到新拋物線,若新拋物線的頂點P在△ABC內(nèi),求m的取值范圍;
(3)將x軸下方的拋物線圖象關(guān)于x軸對稱,得到新的函數(shù)圖象C,若直線y=x+k與圖象C始終有3個交點,求滿足條件的k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知EC∥AB,∠EDA=∠ABF.
(1)求證:四邊形ABCD是平行四邊形;
(2)圖中存在幾對相似三角形?分別是什么?請直接寫出來不必證明;
(3)求證:OA2=OEOF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣(x+1)(x﹣3)與x軸交于A、B兩點,與y軸交于點C,點D為該拋物線的對稱軸上一點,當(dāng)點D到直線BC和到x軸的距離相等時,則點D的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將一張矩形紙片ABCD沿著對角線BD向上折疊,頂點C落到點E處,BE交AD于點F.
(1)求證:△BDF是等腰三角形;
(2)如圖2,過點D作DG∥BE,交BC于點G,連接FG交BD于點O.
①判斷四邊形BFDG的形狀,并說明理由;
②若AB=6,AD=8,求FG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校260名學(xué)生參加植樹活動,要求每人植樹4~7棵,活動結(jié)束后隨機抽查了20名學(xué)生每人的植樹量,并分為四種類型,A:4棵;B:5棵;C:6棵;D:7棵.將各類的人數(shù)繪制成扇形圖(如圖1)和條形圖(如圖2),經(jīng)確認扇形圖是正確的,而條形圖尚有一處錯誤.
回答下列問題:
(1)寫出條形圖中存在的錯誤,并說明理由;
(2)寫出這20名學(xué)生每人植樹量的眾數(shù)和中位數(shù);
(3)求這20名學(xué)生每人植樹量的平均數(shù),并估計這260名學(xué)生共植樹多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鄭老師想為希望小學(xué)四年(3)班的同學(xué)購買學(xué)習(xí)用品,了解到某商店每個書包的價格比每本詞典多8元,用124元恰好可以買到3個書包和2本詞典.
(1)每個書包和每本詞典的價格各是多少元?
(2)鄭老師有1000元,他計劃為全班40位同學(xué)每人購買一件學(xué)習(xí)用品(一個書包或一本詞典)后,余下不少于100元且不超過120元的錢購買體育用品,共有哪幾種購買書包和詞典的方案?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com