【題目】某校260名學(xué)生參加植樹活動,要求每人植樹4~7棵,活動結(jié)束后隨機(jī)抽查了20名學(xué)生每人的植樹量,并分為四種類型,A:4棵;B:5棵;C:6棵;D:7棵.將各類的人數(shù)繪制成扇形圖(如圖1)和條形圖(如圖2),經(jīng)確認(rèn)扇形圖是正確的,而條形圖尚有一處錯誤.
回答下列問題:
(1)寫出條形圖中存在的錯誤,并說明理由;
(2)寫出這20名學(xué)生每人植樹量的眾數(shù)和中位數(shù);
(3)求這20名學(xué)生每人植樹量的平均數(shù),并估計這260名學(xué)生共植樹多少棵?
【答案】(1)條形統(tǒng)計圖中D類型的人數(shù)錯誤;2人;(2)眾數(shù)為5,中位數(shù)為5;(3)1378棵.
【解析】
(1)利用總?cè)藬?shù)20乘以對應(yīng)的百分比即可求得D類的人數(shù)解答;
(2)根據(jù)眾數(shù)、中位數(shù)的定義即可直接求解;
(3)首先求得調(diào)查的20人的平均數(shù),乘以總?cè)藬?shù)260即可.
(1)條形統(tǒng)計圖中D類型的人數(shù)錯誤,
D類的人數(shù)是:20×10%=2(人).
(2)由統(tǒng)計圖可知:B類型的人數(shù)最多,且為8人,所以眾數(shù)為5,
由條形統(tǒng)計圖可知中位數(shù)為B類型對應(yīng)的5;
(3)(棵).
估計260名學(xué)生共植樹5.3×260=1378(棵).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初二年級教師對試卷講評課中學(xué)生參與的深度與廣度進(jìn)行評價調(diào)查,其評價項目為主動質(zhì)疑、獨立思考、專注聽講、講解題目四項.評價組隨機(jī)抽取了若干名初中學(xué)生的參與情況,繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題:
(1)在這次評價中,一共抽查了 名學(xué)生;
(2)在扇形統(tǒng)計圖中,項目“獨立思考”所在的扇形的圓心角的度數(shù)為 度;
(3)請將條形統(tǒng)計圖補(bǔ)充完整;
(4)如果全市有6000名初二學(xué)生,那么在試卷評講課中,“獨立思考”的初二學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知:在菱形ABCD中,E、F分別是BC,CD上的點,且CE=CF.
(1)求證:△ABE≌△ADF;
(2)過點C作CG∥EA交AF于點H,交AD于點G,若∠BAE=25°,∠BCD=130°,求∠AHC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,長為60km的某段線路AB上有甲、乙兩車,分別從南站A和北站B同時出發(fā)相向而行,到達(dá)B、A后立刻返回到出發(fā)站停止,速度均為30km/h,設(shè)甲車,乙車距南站A的路程分別為y甲,y乙(km)行駛時間為t(h).
(1)圖2已畫出y甲與t的函數(shù)圖象,其中a= ,b= ,c= .
(2)分別寫出0≤t≤2及2<t≤4時,y乙與時間t之間的函數(shù)關(guān)系式.
(3)在圖2中補(bǔ)畫y乙與t之間的函數(shù)圖象,并觀察圖象得出在整個行駛過程中兩車相遇的次數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(-1,0),B(3,0)兩點.
(1)求該拋物線的解析式;
(2)求該拋物線的對稱軸以及頂點坐標(biāo);
(3)設(shè)(1)中的拋物線上有一個動點P,當(dāng)點P在該拋物線上滑動到什么位置時,滿足S△PAB=8,并求出此時P點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列各式及其驗證過程:
,驗證:.
,驗證:.
(1)按照上述兩個等式及其驗證過程,猜想的變形結(jié)果并進(jìn)行驗證;
(2)針對上述各式反映的規(guī)律,寫出用(為自然數(shù),且)表示的等式,并進(jìn)行驗證;
(3)用(為任意自然數(shù),且)寫出三次根式的類似規(guī)律,并進(jìn)行驗證.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板中的兩塊直角三角尺的直角頂點 O 按如圖方式疊放在一起.
( 1 ) 如圖 1 , 若∠ BOD=35° , 則∠ AOC= ; 若∠AOC=135°, 則∠BOD= ;
(2)如圖2,若∠AOC=140°,則∠BOD= ;
(3)猜想∠AOC 與∠BOD 的大小關(guān)系,并結(jié)合圖1說明理由.
(4)三角尺 AOB 不動,將三角尺 COD 的 OD 邊與 OA 邊重合,然后繞點 O 按順時針或逆時針方向任意轉(zhuǎn)動一個角度,當(dāng)∠A OD(0°<∠AOD<90°)等于多少度時,這兩塊三角尺各有一條邊互相垂直,直接寫出∠AOD 角度所有可能的值,不用說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】推理填空:
如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),且∠1=∠4( )
∴∠2=∠4 (等量代換)
∴CE∥BF ( )
∴∠ =∠3( )
又∵∠B=∠C(已知),∴∠3=∠B(等量代換)
∴AB∥CD ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰△ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)如圖1,當(dāng)點D在線段BC上,如果∠BAC=90°,求∠BCE的度數(shù);
(2)如圖2,當(dāng)點D在線段BC上,如果∠BAC=60°,則∠BCE的度數(shù);
(3)設(shè)∠BAC=α,∠BCE=β,如圖3,當(dāng)點D在線段BC上移動,則α,β之間有怎樣的數(shù)量關(guān)系?請說明理由;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com