【題目】如圖,在Rt△ABO中,∠OBA=90°,A(4,4),點C在邊AB上,且,點D為OB的中點,點P為邊OA上的動點,當(dāng)點P在OA上移動時,使四邊形PDBC周長最小的點P的坐標(biāo)為_______.
【答案】(,)
【解析】
根據(jù)已知條件得到AB=OB=4,∠AOB=45°,求得BC=3,OD=BD=2,得到D(0,2),C(4,3),作D關(guān)于直線OA的對稱點E,連接EC交OA于P,則此時,四邊形PDBC周長最小,E(0,2),求得直線EC的解析式為,與聯(lián)立解方程組即可得到結(jié)論.
∵在Rt△ABO中,∠OBA=90°,A(4,4),
∴AB=OB=4,∠AOB=45°,
∵,點D為OB的中點,
∴BC=3,OD=BD=2,
∴D(0,2),C(4,3),
作D關(guān)于直線OA的對稱點E,連接EC交OA于P,
則此時,四邊形PDBC周長最小,E(0,2),
∵直線OA 的解析式為,設(shè)直線EC的解析式為,
∴解得,
∴直線EC的解析式為,
,解得,
∴P(,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD和正方形AEFG,AB=12,AE=.設(shè)∠BAE=α(0°≤α≤45°,點E在正方形ABCD內(nèi)部),BE的延長線交直線DG于點Q
(1)求證:△ADG≌△ABE
(2)試求出當(dāng)α由0°變化到45°過程中,點Q運動的路線長,并畫出點Q的運動路徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,M、N為AB的三等分點,DM、DN分別交AC于P、Q兩點,則AP:PQ:QC=________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,⊙M經(jīng)過原點O(0,0),點A(,0)與點B(0,-),點D在劣弧上,連結(jié)BD交x軸于點C,且∠COD=∠CBO.
(1)求⊙M的半徑;
(2)求證:BD平分∠ABO;
(3)在線段BD的延長線上找一點E,使得直線AE恰為⊙M的切線,求此時點E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】剪紙是中國特有的民間藝術(shù).在如圖所示的四個剪紙圖案中.既是軸對稱圖形又是中心對稱圖形的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線L1:y=+bx+c過點C(0,3),與拋物線L2:y=x+2的一個交點為A,且點A的橫坐標(biāo)為2,點P、Q分別是拋物線L1、L2上的動點。
(1)求拋物線L1對應(yīng)的函數(shù)表達(dá)式;
(2)若以點A. C.P、Q為頂點的四邊形恰為平行四邊形,求出點P的坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校計劃利用一片空地建一個學(xué)生自行車車棚,自行車車棚為矩形,其中一面靠墻,這堵墻的長度為,另三面墻用現(xiàn)有的木板材料圍成,總長為,且計劃建造車棚的面積為
(1)如圖1,為了方便學(xué)生出行,學(xué)校決定在與墻平行的一面留兩個寬的門,求這個車棚的長和寬;
(2)如圖2,為了方使學(xué)生停取車,施工單位又決定在車棚內(nèi)修建一條平行于墻和兩條垂直于墻的條等寬小路,使得剩余面積為,求小路的寬度。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在水果銷售旺季,某水果店購進一優(yōu)質(zhì)水果,進價為20元/千克,售價不低于20元/千克,且不超過32元/千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天的銷售量y(千克)與該天的售價x(元/千克)滿足如下表所示的一次函數(shù)關(guān)系.
銷售量y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售價x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天這種水果的售價為23.5元/千克,求當(dāng)天該水果的銷售量.
(2)如果某天銷售這種水果獲利150元,那么該天水果的售價為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以40m/s的速度將小球沿與地面成30°角的方向擊出時,小球的飛行路線將是一條拋物線.如果不考慮空氣阻力,小球的飛行高度h(單位:m)與飛行時間t(單位:s)之間具有函數(shù)關(guān)系h=20t﹣5t2.下列敘述正確的是( 。
A. 小球的飛行高度不能達(dá)到15m
B. 小球的飛行高度可以達(dá)到25m
C. 小球從飛出到落地要用時4s
D. 小球飛出1s時的飛行高度為10m
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com