【題目】正方形ABCD和正方形AEFG,AB=12,AE=.設(shè)∠BAE=α(0°≤α≤45°,點(diǎn)E在正方形ABCD內(nèi)部),BE的延長(zhǎng)線交直線DG于點(diǎn)Q
(1)求證:△ADG≌△ABE
(2)試求出當(dāng)α由0°變化到45°過程中,點(diǎn)Q運(yùn)動(dòng)的路線長(zhǎng),并畫出點(diǎn)Q的運(yùn)動(dòng)路徑.
【答案】(1)見解析;(2);點(diǎn)Q的運(yùn)動(dòng)路徑圖見解析.
【解析】
(1)根據(jù)正方形的性質(zhì)可得AB=AD,AE=AG,∠EAG=∠BAD= 90°,再求出∠DAG=∠BAE,然后利用SAS即可證明△ADG≌△ABE;
(2)根據(jù)全等三角形對(duì)應(yīng)角相等可得∠ADG=∠ABE,然后求出∠BQD=∠BAD=90°,再根據(jù)直徑所對(duì)的圓周角是直角判斷出點(diǎn)Q的軌跡為以BD為直徑的,根據(jù)弧長(zhǎng)公式即可解答,再畫出點(diǎn)Q的運(yùn)動(dòng)路徑圖即可.
(1)證明:在正方形ABCD和正方形AEFG中
AB=AD,AE=AG,∠EAG=∠BAD= 90°
∵∠DAG+∠EAD=∠BAE+∠EAD==90°
∴∠DAG=∠BAE
∴△ADG≌△ABE
(2)解:∵△ADG≌△ABE
∴∠ADG=∠ABE
∴∠BQD=∠BAD=90°
∴點(diǎn)Q的運(yùn)動(dòng)軌跡為以BD為直徑的,所對(duì)的圓心角是90°
∵AB=12
∴BD=AB=12
∴旋轉(zhuǎn)過程中點(diǎn)Q運(yùn)動(dòng)的路線長(zhǎng)=
點(diǎn)Q的運(yùn)動(dòng)路徑,如圖
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論: ① abc<0;② 2a+b=0; ③ b2-4ac<0;④ 9a+3b+c>0; ⑤ c+8a<0.正確的結(jié)論有( 。.
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個(gè)反比例函數(shù)和在第一象限內(nèi)的圖象如圖所示,點(diǎn)在的圖象上,軸于點(diǎn),交的圖象于點(diǎn),軸于點(diǎn),交的圖象于點(diǎn),當(dāng)點(diǎn)在的圖象上運(yùn)動(dòng)時(shí),以下結(jié)論:
①與的面積相等;
②四邊形的面積不會(huì)發(fā)生變化;
③與始終相等;
④當(dāng)點(diǎn)是的中點(diǎn)時(shí),點(diǎn)一定是的中點(diǎn).
其中一定正確的是__________.(把你認(rèn)為正確結(jié)論的序號(hào)都填上,少填多填都不得分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)yx2x﹣2
(1)分別求此二次函數(shù)圖象與x軸的交點(diǎn)A.B和與y軸交點(diǎn)C以及頂點(diǎn)D坐標(biāo);
(2)求△ABC的面積;
(3)該二次函數(shù)圖象上有一點(diǎn)P(x,y),使S△ABP=S△ABC,請(qǐng)求出P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)O在AC上,且AO=3,CO=6,點(diǎn)P是AB上一動(dòng)點(diǎn),連接OP,將線段OP繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°得到線段OD.要使點(diǎn)D恰好落在BC上,則AP=( 。
A.6或4.5B.6C.3D.4.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方形網(wǎng)格中,△ABC為格點(diǎn)三角形(即三角形的頂點(diǎn)都在格點(diǎn)上).
(1)把△ABC沿BA方向平移后,點(diǎn)A移到點(diǎn)A1,在網(wǎng)格中畫出平移后得到的△A1B1C1;
(2)把△A1B1C1繞點(diǎn)A1按逆時(shí)針方向旋轉(zhuǎn)90°,在網(wǎng)格中畫出旋轉(zhuǎn)后的△A1B2C2;
(3)如果網(wǎng)格中小正方形的邊長(zhǎng)為1,求點(diǎn)B經(jīng)過(1)、(2)變換的路徑總長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣(2m﹣1)x+m2+1=0有兩個(gè)不相等實(shí)數(shù)根x1,x2
(1)求實(shí)數(shù)m的取值范圍;
(2)若x12+x22=x1x2+3時(shí),求實(shí)數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)()的圖象.分別交于,兩點(diǎn).
(1)分別求一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)若,結(jié)合圖像,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABO中,∠OBA=90°,A(4,4),點(diǎn)C在邊AB上,且,點(diǎn)D為OB的中點(diǎn),點(diǎn)P為邊OA上的動(dòng)點(diǎn),當(dāng)點(diǎn)P在OA上移動(dòng)時(shí),使四邊形PDBC周長(zhǎng)最小的點(diǎn)P的坐標(biāo)為_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com