【題目】如圖,已知矩形ABCD(AB<AD).

(1)請(qǐng)用直尺和圓規(guī)按下列步驟作圖,保留作圖痕跡;
①以點(diǎn)A為圓心,以AD的長(zhǎng)為半徑畫(huà)弧交邊BC于點(diǎn)E,連接AE;
②作∠DAE的平分線交CD于點(diǎn)F;
③連接EF;
(2)在(1)作出的圖形中,若AB=8,AD=10,則tan∠FEC的值為

【答案】
(1)

解:如圖所示;


(2)
【解析】解:(1.)如圖所示;

(2.)由(1)知AE=AD=10、∠DAF=∠EAF,
∵AB=8,
∴BE= =6,
在△DAF和△EAF中,

∴△DAF≌△EAF(SAS),
∴∠D=∠AEF=90°,
∴∠BEA+∠FEC=90°,
又∵∠BEA+∠BAE=90°,
∴∠FEC=∠BAE,
∴tan∠FEC=tan∠BAE= = = ,
所以答案是:
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解矩形的性質(zhì)的相關(guān)知識(shí),掌握矩形的四個(gè)角都是直角,矩形的對(duì)角線相等,以及對(duì)解直角三角形的理解,了解解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:正方形ABCD的邊長(zhǎng)為8,點(diǎn)EF分別在AD、CD上,AEDF2BEAF相交于點(diǎn)G,點(diǎn)HBF的中點(diǎn),連接GH,則GH的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E是正方形ABCD的邊BC延長(zhǎng)線上一點(diǎn),連結(jié)DE,過(guò)頂點(diǎn)B作BF⊥DE,垂足為F,BF分別交AC于H,交BC于G.
(1)求證:BG=DE;
(2)若點(diǎn)G為CD的中點(diǎn),求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班參加一次智力競(jìng)賽,共a、b、c三題,每題或者得滿分或者得0分,其中題a滿分20分,題b、題c滿分均為25分.競(jìng)賽結(jié)果,每個(gè)學(xué)生至少答對(duì)了一題,三題全答對(duì)的有1人,答對(duì)其中兩道題的有15人,答對(duì)題a的人數(shù)與答對(duì)題b的人數(shù)之和為29,答對(duì)題a的人數(shù)與答對(duì)題c的人數(shù)之和為25,答對(duì)題b的人數(shù)與答對(duì)題c的人數(shù)之和為20,在這個(gè)班的平均成績(jī)是__分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校決定組織學(xué)生開(kāi)展校外拓展活動(dòng),若每位老師帶17個(gè)學(xué)生,還剩12個(gè)學(xué)生沒(méi)人帶;若每位老師帶18個(gè)學(xué)生,就有一位老師少帶4個(gè)學(xué)生.現(xiàn)有甲乙兩種大客車(chē),它們的載客量和租金如下表所示.學(xué)校計(jì)劃此次拓展活動(dòng)的租車(chē)總費(fèi)用不超過(guò)3100元,為了安全,每輛客車(chē)上至少要有2名老師.

客車(chē)

甲種

乙種

載客量/(人/輛)

30

42

/(元/輛)

300

400

1)參加此次拓展活動(dòng)的老師有 人,參加此次拓展活動(dòng)的學(xué)生有 人;

2)既要保證所有師生都有車(chē)坐,又要保證每輛客車(chē)上至少要有2名老師,可知租用客車(chē)總數(shù)為 輛.

3)你能得出哪幾種不同的租車(chē)方案?其中哪種租車(chē)方案最省錢(qián)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,長(zhǎng)方形OABC的頂點(diǎn)A、C分別在x軸、y軸的正半軸上,點(diǎn)B的坐標(biāo)為(8,4),將該長(zhǎng)方形沿OB翻折,點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)D,ODBC交于點(diǎn)E

1)求點(diǎn)E的坐標(biāo);
2)點(diǎn)MOB上任意一點(diǎn),點(diǎn)NOA上任意一點(diǎn),是否存在點(diǎn)MN,使得AM+MN最?若存在,求出其最小值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC的面積為3BDDC21,EAC的中點(diǎn),ADBE相交于點(diǎn)P,那么四邊形PDCE的面積為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從甲地到乙地有三條不同的公交線路.為了解早高峰期間這三條線路上的公交車(chē)從甲地到乙地的用時(shí)情況,在每條線路上隨機(jī)選取了500個(gè)班次的公交車(chē),收集了這些班次的公交車(chē)用時(shí)(單位:分鐘)的數(shù)據(jù),統(tǒng)計(jì)如下:

公交車(chē)用時(shí)的頻數(shù)

公交車(chē)用時(shí)線路

合計(jì)

59

151

166

124

500

50

50

122

278

500

45

265

160

30

500

早高峰期間,乘坐_________(填,)線路上的公交車(chē),從甲地到乙地用時(shí)不超過(guò)45分鐘的可能性最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AD、AE分別是RtABC的高和中線,AB9cm,AC12cmBC15cm,試求:

1AD的長(zhǎng)度;

2)△ACE和△ABE的周長(zhǎng)的差.

查看答案和解析>>

同步練習(xí)冊(cè)答案