【題目】從甲地到乙地有三條不同的公交線路.為了解早高峰期間這三條線路上的公交車從甲地到乙地的用時情況,在每條線路上隨機選取了500個班次的公交車,收集了這些班次的公交車用時(單位:分鐘)的數據,統(tǒng)計如下:
公交車用時的頻數 公交車用時線路 | 合計 | ||||
59 | 151 | 166 | 124 | 500 | |
50 | 50 | 122 | 278 | 500 | |
45 | 265 | 160 | 30 | 500 |
早高峰期間,乘坐_________(填“”,“”或“”)線路上的公交車,從甲地到乙地“用時不超過45分鐘”的可能性最大.
科目:初中數學 來源: 題型:
【題目】如圖,點D是直線外一點,在上取兩點A,B,連接AD,分別以點B,D為圓心,AD,AB的長為半徑畫弧,兩弧交于點C,連接CD,BC,則四邊形ABCD是平行四邊形,理由是:_________________________
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知矩形ABCD(AB<AD).
(1)請用直尺和圓規(guī)按下列步驟作圖,保留作圖痕跡;
①以點A為圓心,以AD的長為半徑畫弧交邊BC于點E,連接AE;
②作∠DAE的平分線交CD于點F;
③連接EF;
(2)在(1)作出的圖形中,若AB=8,AD=10,則tan∠FEC的值為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,邊AB的垂直平分線交AD于點E,交CB的延長線于點F,連接AF,BE.
(1)求證:△AGE≌△BGF;
(2)試判斷四邊形AFBE的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數y=ax2+bx+4的圖象與x軸交于點B(﹣2,0),點C(8,0),與y軸交于點A.
(1)求二次函數y=ax2+bx+4的表達式;
(2)連接AC,AB,若點N在線段BC上運動(不與點B,C重合),過點N作NM∥AC,交AB于點M,當△AMN面積最大時,求N點的坐標;
(3)連接OM,在(2)的結論下,求OM與AC的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c(a>0)的圖象經過點A(1,2).
(1)當b=1,c=﹣4時,求該二次函數的表達式;
(2)已知點M(t﹣1,5),N(t+1,5)在該二次函數的圖象上,請直接寫出t的取值范圍;
(3)當a=1時,若該二次函數的圖象與直線y=3x﹣1交于點P,Q,將此拋物線在直線PQ下方的部分圖象記為C,
①試判斷此拋物線的頂點是否一定在圖象C上?若是,請證明;若不是,請舉反例;
②已知點P關于拋物線對稱軸的對稱點為P′,若P′在圖象C上,求b的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與x軸交于點A(﹣5,0)和點B(3,0).與y軸交于點C(0,5).有一寬度為1,長度足夠的矩形(陰影部分)沿x軸方向平移,與y軸平行的一組對邊交拋物線于點P和Q,交直線AC于點M和N.交x軸于點E和F.
(1)求拋物線的解析式;
(2)當點M和N都在線段AC上時,連接MF,如果sin∠AMF= ,求點Q的坐標;
(3)在矩形的平移過程中,當以點P,Q,M,N為頂點的四邊形是平行四邊形時,求點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=3x與雙曲線y= (k≠0,且x>0)交于點A,點A的橫坐標是1.
(1)求點A的坐標及雙曲線的解析式;
(2)點B是雙曲線上一點,且點B的縱坐標是1,連接OB,AB,求△AOB的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com