【題目】如圖,四邊形中ABCD中,E,F(xiàn)分別是AB,CD的中點,P為對角線AC延長線上的任意一點,PFADM,PEBCN,EFMNK.

求證:K是線段MN的中點.

【答案】證明見解析.

【解析】

AC的中點Q,連接QF、QE,過C點作CRQFMP于點R,連接NR.由QFAD,QENC可證得=.由CRAD可知==1,則==,從而可證得FKRN,最后可得KM=KN.

AC的中點Q,連接QF、QE,過C點作CRQFMP于點R,連接NR,

Q、F、E分別是AC、CD、AB的中點,

QFAD,QENC,

=,=,

AQ=CQ,

=,

QFAD,CRQF,

CRAD,

==1,

FM=FR,

==,

EFRN.

FKRN,F(xiàn)M=FR,

KM=KN,即K是線段MN的中點.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知在△ABC中,AB=AC,BD和CE分別是∠ABC和∠ACB的角平分線,且BD和CE相交于O點.

(1)試說明△OBC是等腰三角形;

(2)連接OA,試判斷直線OA與線段BC的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=AD,ADBC,∠ABC=60°,∠BCD=30°,BC=6,那么ACD的面積是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,E為BC邊上一點,連結(jié)AE.已知AB=8,CE=2,F(xiàn)是線段AE上一動點.若BF的延長線交正方形ABCD的一邊于點G,且滿足AE=BG,則的值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ACBD中,AC6,BC8AD2,BD4DE是△ABD的邊AB上的高,且DE4,求△ABC的邊AB上的高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某家具商場計劃購進某種餐桌、餐椅進行銷售,有關(guān)信息如下表:

原進價(元/張)

零售價(元/張)

成套售價(元/套)

餐桌

a

270

500

餐椅

b

70

若購進3張餐桌18張餐椅需要1170元;若購進5張餐桌25張餐椅需要1750元.

1)求表中a,b的值;

2)若該商場購進餐椅的數(shù)量是餐桌數(shù)量的5倍還多20張,且餐桌和餐椅的總數(shù)量不超過200張.該商場計劃將全部餐桌配套銷售(一張餐桌和四張餐椅配成一套),其余餐椅以零售方式銷售.設(shè)購進餐桌的數(shù)量為x(張),總利潤為W(元),求W關(guān)于x的函數(shù)關(guān)系式,并求出總利潤最大時的進貨方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形中,,相交于點,的中點,,,

1)求證:四邊形是平行四邊形;

2)若,求的周長和面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中,AB=AC=6cm,BC=4cm,點DAB的中點

⑴如果點P在線段BC上以1cm/s的速度由點B向點C運動,同時,點Q在線段CA上由點C向點A運動

①若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,BPDCPQ是否全等,請說明理由;

②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為______cm/s時,在某一時刻也能夠使BPDCPQ全等

⑵若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都按逆時針方向沿ABC的三邊運動求經(jīng)過多少秒后,點P與點Q第一次相遇,并寫出第一次相遇點在ABC的哪條邊上?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=2x+8分別交x軸,y軸于點AB,直線yx+3y軸于點C,兩直線相交于點D

1)求點D的坐標;

2)如圖2,過點AAEy軸交直線yx+3于點E,連接AC,BE.求證:四邊形ACBE是菱形;

3)如圖3,在(2)的條件下,點F在線段BC上,點G在線段AB上,連接CG,FG,當CG=FG,且∠CGF=ABC時,求點G的坐標.

查看答案和解析>>

同步練習冊答案