【題目】通過學(xué)習(xí)銳角三角比,我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長的比值是一一對(duì)應(yīng)的,因此,兩條邊長的比值與角的大小之間可以相互轉(zhuǎn)化。類似的,可以在等腰三角形中建立邊角之間的聯(lián)系。我們定義:等腰三角形中底邊與腰的比叫做底角的鄰對(duì)(can).

如圖(1)在中,,底角的鄰對(duì)記作,這時(shí),容易知道一個(gè)角的大小與這個(gè)角的鄰對(duì)值也是一一對(duì)應(yīng)的.根據(jù)上述角的鄰對(duì)的定義解下列問題:

1= ;

2)如圖(2),在中,,,,求的周長

【答案】1can30°=;(2ABC的周長=

【解析】

1)過點(diǎn)AADBC于點(diǎn)D,根據(jù)∠B=30°,可得出BD= AB,結(jié)合等腰三角形的性質(zhì)可得出BC= AB,繼而得出canB;

2)過點(diǎn)AAEBC于點(diǎn)E,根據(jù)canB= ,設(shè)BC=8x,AB=5x,再由SABC=24,可得出x的值,繼而求出周長.

1(1)過點(diǎn)AADBC于點(diǎn)D,

∵∠B=30°

cosB= =,

BD= AB,

∵△ABC是等腰三角形,

BC=2BD=AB

can30°= =

2)∵在ABC中, canB ,∴

設(shè)

過點(diǎn)AAE垂足為點(diǎn)E,

AB=AC

ABC的周長=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組請(qǐng)結(jié)合題意填空,完成本題的解答.

(Ⅰ)解不等式①,得_______________;

(Ⅱ)解不等式②,得_______________;

(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:

(Ⅳ)原不等式組的解集為______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C對(duì)稱軸為直線x=1.直線y=﹣x+c與拋物線y=ax2+bx+c交于C、D兩點(diǎn),D點(diǎn)在x軸下方且橫坐標(biāo)小于3,則下列結(jié)論:

①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a<﹣1.

其中正確的有(  )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了“創(chuàng)建文明城市,建設(shè)美麗家園”,我市某社區(qū)將轄區(qū)內(nèi)的一塊面積為1000m2的空地進(jìn)行綠化,一部分種草,剩余部分栽花,設(shè)種草部分的面積為m2),種草所需費(fèi)用1(元)與m2)的函數(shù)關(guān)系式為,其圖象如圖所示:栽花所需費(fèi)用2(元)與x(m2)的函數(shù)關(guān)系式為2=﹣0.012﹣20+300000≤≤1000).

(1)請(qǐng)直接寫出k1k2和b的值;

(2)設(shè)這塊1000m2空地的綠化總費(fèi)用為W(元),請(qǐng)利用W與的函數(shù)關(guān)系式,求出綠化總費(fèi)用W的最大值;

(3)若種草部分的面積不少于700m2,栽花部分的面積不少于100m2,請(qǐng)求出綠化總費(fèi)用W的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2﹣2x+3.

(1)把函數(shù)關(guān)系式配成頂點(diǎn)式并求出圖象的頂點(diǎn)坐標(biāo)和對(duì)稱軸.

(2)若圖象與x軸交點(diǎn)為A.B,與y軸交點(diǎn)為C,求A、B、C三點(diǎn)的坐標(biāo);

(3)在圖中畫出圖象.并求出△ABC面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BE平分ABC交AC于點(diǎn)E,過點(diǎn)E作EDBC交AB于點(diǎn)D.

(1)求證:AEBC=BDAC;

(2)如果=3,=2,DE=6,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸正半軸交于點(diǎn)A30).以OA為邊在軸上方作正方形OABC,延長CB交拋物線于點(diǎn)D,再以BD為邊向上作正方形BDEF,則= ,點(diǎn)E的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為(1,2),(-2,3),(-1,0),把它們的橫坐標(biāo)和縱坐標(biāo)都擴(kuò)大到原來的2倍,得到點(diǎn), , .下列說法正確的是(  )

A. 與△ABC是位似圖形,位似中心是點(diǎn)(1,0)

B. 與△ABC是位似圖形,位似中心是點(diǎn)(0,0)

C. 與△ABC是相似圖形,但不是位似圖形

D. 與△ABC不是相似圖形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在⊙O中,AB=4, AF=6,AC是直徑,ACBDF,圖中陰影部分的面積是( 。

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案