【題目】如圖,拋物線軸正半軸交于點A3,0).以OA為邊在軸上方作正方形OABC,延長CB交拋物線于點D,再以BD為邊向上作正方形BDEF,則= ,點E的坐標是

【答案】;(1+,1+

【解析】

把點A3,0)代入拋物線,即可求得a的值,正方形OABC可得點C坐標,代入函數(shù)解析式求得點D坐標,可知點E橫坐標,再利用正方形BDEF的性質(zhì)得出點E縱坐標問題得解.

把點A3,0)代入拋物線,

解得a=;

四邊形OABC為正方形,

C的坐標為(0,3),點D的縱坐標為3

代入y=x2-x-,

解得x1=1+,x2=1-(不合題意,舍去),

因此正方形BDEF的邊長B1+-3=-2,

所以AF=3+-2=1+,

由此可以得出點E的坐標為(1+,1+).

故答案為:;(1+,1+).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸相交于兩點,(點AB點左側(cè))與y軸交于點C.

(Ⅰ)求兩點坐標.

(Ⅱ)連結(jié),若點P在第一象限的拋物線上,P的橫坐標為t,四邊形的面積為S.試用含t的式子表示S,并求t為何值時,S最大.

(Ⅲ)在(Ⅱ)的基礎(chǔ)上,若點分別為拋物線及其對稱軸上的點,點G的橫坐標為m,點H的縱坐標為n,且使得以四點構(gòu)成的四邊形為平行四邊形,求滿足條件的的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,將一塊含有角的直角三角板如圖放置,直角頂點的坐標為,頂點的坐標為,頂點恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿軸正方向平移,當(dāng)頂點恰好落在該雙曲線上時停止運動,則此時點的對應(yīng)點的坐標為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】通過學(xué)習(xí)銳角三角比,我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值是一一對應(yīng)的,因此,兩條邊長的比值與角的大小之間可以相互轉(zhuǎn)化。類似的,可以在等腰三角形中建立邊角之間的聯(lián)系。我們定義:等腰三角形中底邊與腰的比叫做底角的鄰對(can).

如圖(1)在中,,底角的鄰對記作,這時,容易知道一個角的大小與這個角的鄰對值也是一一對應(yīng)的.根據(jù)上述角的鄰對的定義解下列問題:

1= ;

2)如圖(2),在中,,,,求的周長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“數(shù)學(xué)迷”小楠通過從“特殊到一般”的過程,對倍角三角形(一個內(nèi)角是另一個內(nèi)角的2倍的三角形)進行研究,得出結(jié)論:如圖1,中,、的對邊分別是、、,如果,那么.下面給出小楠對其中一種特殊情形的一種證明方法.

已知:如圖2,在△中,,.求證:

證明:如圖2,延長,使得

,

,,

,

,

∴△

,即

根據(jù)上述材料提供的信息,請你完成下列情形的證明(用不同于材料中的方法也可以);

已知:如圖1,在△中,

求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場將每件進價為20元的玩具以30元的價格出售時,每天可售出300.經(jīng)調(diào)查當(dāng)單價每漲l元時,每天少售出10.若商場想每天獲得3750元利潤,設(shè)每件玩具漲元,可列方程為:.對所列方程中出現(xiàn)的代數(shù)式,下列說法錯誤的是(

A.表示漲價后玩具的單價

B.表示漲價后少售出玩具的數(shù)量

C.表示漲價后銷售玩具的數(shù)量

D.表示漲價后的每件玩具的單價

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A、B、C三地在同一條路上,A地在B地的正南方3千米處,甲、乙兩人分別從AB兩地向正北方向的目的地C勻速直行,他們分別和A地的距離s(千米)與所用的時間t(小時)的函數(shù)關(guān)系如圖所示.

(1)圖中的線段l1 (填)的函數(shù)圖象C地在B地的正北方向 千米處;

(2)誰先到達C地?并求出甲乙兩人到達C地的時間差;

(3)如果速度慢的人在兩人相遇后立刻提速,并且比先到者晚1小時到達C地,求他提速后的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.

(1)求二次函數(shù)的表達式;

(2)y軸上是否存在一點P,使PBC為等腰三角形.若存在,請求出點P的坐標;

(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當(dāng)點M 達點B時,點M、N同時停止運動,問點M、N運動到何處時,MNB面積最大,試求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電器城經(jīng)銷A型號彩電,今年四月份每臺彩電售價與去年同期相比降價500元,結(jié)果賣出彩電的數(shù)量相同,但去年銷售額為5萬元,今年銷售額為4萬元.

1)問去年四月份每臺A型號彩電售價是多少元?

2)為了改善經(jīng)營,電器城決定再經(jīng)銷B型號彩電.已知A型號彩電每臺進貨價為1800元,B型號彩電每臺進貨價為1500元,電器城預(yù)計用不多于3.3萬元且不少于3.2萬元的資金購進這兩種彩電共20臺,問有哪幾種進貨方案?

3)電器城準備把A型號彩電繼續(xù)以原價出售,B型號彩電以每臺1800元的價格出售,在這批彩電全部賣出的前提下,如何進貨才能使電器城獲利最大?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案