【題目】如圖,已知∠1=∠2,要得到△ABD≌△ACD,還需從下列條件中補選一個,則錯誤的選法是(
A.AB=AC
B.DB=DC
C.∠ADB=∠ADC
D.∠B=∠C

【答案】B
【解析】解:A、∵AB=AC, ∴
∴△ABD≌△ACD(SAS);故此選項正確;
B、當(dāng)DB=DC時,AD=AD,∠1=∠2,
此時兩邊對應(yīng)相等,但不是夾角對應(yīng)相等,故此選項錯誤;
C、∵∠ADB=∠ADC,
,
∴△ABD≌△ACD(ASA);故此選項正確;
D、∵∠B=∠C,
,
∴△ABD≌△ACD(AAS);故此選項正確.
故選:B.
先要確定現(xiàn)有已知在圖形上的位置,結(jié)合全等三角形的判定方法對選項逐一驗證,排除錯誤的選項.本題中C、AB=AC與∠1=∠2、AD=AD組成了SSA是不能由此判定三角形全等的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解八年級學(xué)生的課外閱讀情況,我校語文組從八年級隨機抽取了若干名學(xué)生,對他們的讀書時間進行了調(diào)查并將收集的數(shù)據(jù)繪成了兩幅不完整的統(tǒng)計圖,請你依據(jù)圖中提供的信息,解答下列問題:(每組含最小值不含最大值)

(1)從八年級抽取了多少名學(xué)生?
(2)填空(直接把答案填到橫線上)
①“2-2.5小時”的部分對應(yīng)的扇形圓心角為度;
②課外閱讀時間的中位數(shù)落在(填時間段)內(nèi).
(3)如果八年級共有800名學(xué)生,請估算八年級學(xué)生課外閱讀時間不少于1.5小時的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠A=80°,∠B=20°,∠C=36°,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點P為直線 外一點,點A、B、C為直線 上三點,PA=4cm,PB=5cm,PC=2cm,則點P到直線 的距離為( )
A.4cm
B.5cm
C.小于2cm
D.不大于2cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過原點O,頂點為A(1,1),且與直線y=x﹣2交于B,C兩點.

(1)求拋物線的解析式及點C的坐標(biāo);

(2)求證:△ABC是直角三角形;

(3)若點N為x軸上的一個動點,過點N作MN⊥x軸與拋物線交于點M,則是否存在以O(shè),M,N為頂點的三角形與△ABC相似?若存在,請求出點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,∠BAC=90°,AD⊥BC于D,則下列結(jié)論中,正確的個數(shù)為( ). ①AB⊥AC; ②AD與AC互相垂直; ③點C到AB的垂線段是線段AB; ④點D到BC的距離是線段AD的長度; ⑤線段AB的長度是點B到AC的距離; ⑥線段AB是點B到AC的距離; ⑦AD>BD.


A.2個
B.4個
C.7個
D.0個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點A、B的坐標(biāo)分別為(8,0)、(0,),C是AB的中點,過點C作y軸的垂線,垂足為D,動點P從點D出發(fā),沿DC向點C勻速運動,過點P作x軸的垂線,垂足為E,連接BP、EC.當(dāng)BP所在直線與EC所在直線第一次垂直時,點P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們將在直角坐標(biāo)系中圓心坐標(biāo)和半徑均為整數(shù)的圓稱為“整圓”.如圖,直線l:與x軸、y軸分別交于A、B,∠OAB=30°,點P在x軸上,⊙P與l相切,當(dāng)P在線段OA上運動時,使得⊙P成為整圓的點P個數(shù)是(

A.6 B.8 C.10 D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組數(shù)據(jù)5,4,2,5,6的中位數(shù)是( 。
A.5
B.4
C.2
D.6

查看答案和解析>>

同步練習(xí)冊答案