【題目】如圖,已知AB是⊙O的直徑,過O點(diǎn)作OP⊥AB,交弦AC于點(diǎn)D,交⊙O于點(diǎn)E,且使∠PCA=∠ABC.
(1)求證:PC是⊙O的切線;
(2)若∠P=60°,PC=2,求PE的長.
【答案】
(1)解:連接OC,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠BCO+∠ACO=90°,
∵OC=OB,
∴∠B=∠BCO,
∵∠PCA=∠ABC,
∴∠BCO=∠ACP,
∴∠ACP+∠OCA=90°,
∴∠OCP=90°,
∴PC是⊙O的切線
(2)解:∵∠P=60°,PC=2,∠PCO=90°,
∴OC=2 ,OP=2PC=4,
∴PE=OP﹣OE=OP﹣OC=4﹣2
【解析】(1)連接OC,要證PC是⊙O的切線,只需證∠OCP=90°。根據(jù)直徑所對(duì)的圓周角是直角可得∠ACB=90°,結(jié)合已知條件可證得∠OCP=90°,則結(jié)論可得。
(2)由(1)知∠PCO=90°,在直角三角形PCO中,根據(jù)直角三角形中,30度角所對(duì)的直角邊等于斜邊的一半可求出OP,則PE=OP﹣OE=OP﹣OC。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測(cè)量某建筑物CD的高度,先在地面上用測(cè)角儀自A處測(cè)得建筑物頂部的仰角是30°,然后在水平地面上向建筑物前進(jìn)了100m,此時(shí)自B處測(cè)得建筑物頂部的仰角是45°.已知測(cè)角儀的高度是1.5m,請(qǐng)你計(jì)算出該建筑物的高度.(取 =1.732,結(jié)果精確到1m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個(gè)古代車輪的碎片,小明為求其外圓半徑,連接外圓上的兩點(diǎn)A、B,并使AB與車輪內(nèi)圓相切于點(diǎn)D,半徑為OC⊥AB交外圓于點(diǎn)C.測(cè)得CD=10cm,AB=60cm,則這個(gè)車輪的外圓半徑是( )
A.10cm
B.30cm
C.60cm
D.50cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△AOB中,∠O=90°,AO=8cm,BO=6cm,點(diǎn)C從A點(diǎn)出發(fā),在邊AO上以4cm/s的速度向O點(diǎn)運(yùn)動(dòng),與此同時(shí),點(diǎn)D從點(diǎn)B出發(fā),在邊BO上以3cm/s的速度向O點(diǎn)運(yùn)動(dòng),過OC的中點(diǎn)E作CD的垂線EF,則當(dāng)點(diǎn)C運(yùn)動(dòng)了 s時(shí),以C點(diǎn)為圓心,2cm為半徑的圓與直線EF相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某人因需要經(jīng)常去復(fù)印資料,甲復(fù)印社按A4紙每10頁2元計(jì)費(fèi),乙復(fù)印社則按A4紙每10頁0.8元計(jì)費(fèi),但需按月付一定數(shù)額的承包費(fèi).兩復(fù)印社每月收費(fèi)情況如圖所示,根據(jù)圖中提供的信息解答下列問題:
(1)乙復(fù)印社要求客戶每月支付的承包費(fèi)是_______元;
(2)當(dāng)每月復(fù)印_______頁時(shí),兩復(fù)印社實(shí)際收費(fèi)相同;
(3)如果每月復(fù)印200頁時(shí),應(yīng)選擇_______復(fù)印社?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七年級(jí)學(xué)生小聰和小明完成了數(shù)學(xué)實(shí)驗(yàn)《鐘面上的數(shù)學(xué)》之后,自制了一個(gè)模擬鐘面,如圖所示,O為模擬鐘面圓心,M、O、N在一條直線上,指針OA、OB分別從OM、ON出發(fā)繞點(diǎn)O轉(zhuǎn)動(dòng),OA運(yùn)動(dòng)速度為每秒15°,OB運(yùn)動(dòng)速度為每秒5°,當(dāng)一根指針與起始位置重合時(shí),運(yùn)動(dòng)停止,設(shè)轉(zhuǎn)動(dòng)的時(shí)間為t秒,請(qǐng)你試著解決他們提出的下列問題:
(1)若OA順時(shí)針轉(zhuǎn)動(dòng),OB逆時(shí)針轉(zhuǎn)動(dòng),t= 秒時(shí),OA與OB第一次重合;
(2)若它們同時(shí)順時(shí)針轉(zhuǎn)動(dòng),
①當(dāng) t=2秒時(shí),∠AOB= °;
②當(dāng)t為何值時(shí),OA與OB第一次重合?
③當(dāng)t為何值時(shí),∠AOB=30°?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程(k-2)x2-4x+2=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求k的取值范圍;
(2)如果k是符合條件的最大整數(shù),且一元二次方程x2-4x+k=0與x2+mx-1=0有一個(gè)相同的根,求此時(shí)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班為滿足同學(xué)們課外活動(dòng)的需求,要求購排球和足球若干個(gè).已知足球的單價(jià)比排球的單價(jià)多30元,用500元購得的排球數(shù)量與用800元購得的足球數(shù)量相等.
(1)排球和足球的單價(jià)各是多少元?
(2)若恰好用去1200元,有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a是大于1的實(shí)數(shù),且有a3+a-3=p,a3-a-3=q.
(1)若p+q=4,求p-q的值;
(2)當(dāng)q2=22n+-2(n≥1,且n是整數(shù))時(shí),比較p與a3+的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com