【題目】如圖,ABC是等邊三角形,AB=3,EAC上且AE=AC,D是直線BC上一動(dòng)點(diǎn),線段ED繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)900,得到線段EF,當(dāng)點(diǎn)D運(yùn)動(dòng)時(shí),則線段AF的最小值是_______

【答案】

【解析】

DMACM,F(xiàn)NACN,如圖,設(shè)DM=x,則CM=x,可計(jì)算出EM=-x+1,再利用旋轉(zhuǎn)的性質(zhì)得到ED=EF,DEF=90°,證明EDM≌△FEN得到DM=FN=x,EM=NF=-x+1,接著利用勾股定理得到AF2=(-x+1)2+(2+x)2,配方得到AF2= (x-2+,然后利用非負(fù)數(shù)的性質(zhì)得到AF的最小值.

解:作DMACM,F(xiàn)NACN,如圖,

設(shè)DM=x,

RtCDM中,CM=DM=x,

EM+x=1,

EM=-x+1,

∵線段ED繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°,得到線段EF,

ED=EF,DEF=90°,

可得EDM≌△FEN,

DM=FN=x,EM=NF=-x+1,

RtAFN中,AF2=(-x+1)2+(2+x)2=(x-2+

當(dāng)x=時(shí),AF2有最小值

AF的最小值為.

故答案為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD中,BE平分∠DBC且交CD邊于點(diǎn)E,將△BCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)到△DCF的位置,并延長BE交DF于點(diǎn)G.

(1)求證:△BDG∽△DEG;

(2)若EGBG=4,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2﹣2axx軸相交于O、A兩點(diǎn),OA=4,點(diǎn)D為拋物線的頂點(diǎn),并且直線y=kx+b與該拋物線相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,B點(diǎn)的橫坐標(biāo)是﹣1.

(1)求k,a,b的值;

(2)若P是直線AB上方拋物線上的一點(diǎn),設(shè)P點(diǎn)的橫坐標(biāo)是t,PAB的面積是S,求S關(guān)于t的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;

(3)在(2)的條件下,當(dāng)PBCD時(shí),點(diǎn)Q是直線AB上一點(diǎn),若∠BPQ+CBO=180°,求Q點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中,厘米,厘米,點(diǎn)的中點(diǎn).

1)如果點(diǎn)P在線段BC上以3厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).

①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過1秒后,是否全等,請(qǐng)說明理由;

②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等, 是否可能全等?若能,求出全等時(shí)點(diǎn)Q的運(yùn)動(dòng)速度和時(shí)間;若不能,請(qǐng)說明理由.

2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿三邊運(yùn)動(dòng),求經(jīng)過多長時(shí)間點(diǎn)P與點(diǎn)Q第一次在的哪條邊上相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c過點(diǎn)A(﹣4,﹣3),與y軸交于點(diǎn)B,對(duì)稱軸是x=﹣3,請(qǐng)解答下列問題:

(1)求拋物線的解析式.

(2)若和x軸平行的直線與拋物線交于C,D兩點(diǎn),點(diǎn)C在對(duì)稱軸左側(cè),且CD=8,求△BCD的面積.注:拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸是x=﹣.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:中,

如圖1,若,,,且,求AD的長;

如圖2,請(qǐng)利用沒有刻度的直尺和圓規(guī),在線段AB上找一點(diǎn)F,使得點(diǎn)F到邊AC的距離等于注:不寫作法,保留作圖痕跡,對(duì)圖中涉及到的點(diǎn)用字母進(jìn)行標(biāo)注

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1如圖1,已知:在ABC中,BAC90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD直線m, CE直線m,垂足分別為點(diǎn)DE.證明:DE=BD+CE.

2 如圖2,將1中的條件改為:在ABC中,AB=ACD、A、E三點(diǎn)都在直線m,并且有BDA=AEC=BAC=,其中為任意銳角或鈍角.請(qǐng)問結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說明理由.

3拓展與應(yīng)用:如圖3,D、ED、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)FBAC平分線上的一點(diǎn),ABFACF均為等邊三角形,連接BD、CE,BDA=AEC=BAC,試判斷DEF的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)遭受嚴(yán)重的自然災(zāi)害,空軍某部隊(duì)奉命趕災(zāi)區(qū)空投物資,已知空投物資離開飛機(jī)后在空中沿拋物線降落,拋物線頂點(diǎn)為機(jī)艙航口,如圖所示,如果空投物資離開處后下落的垂直高度米時(shí),它測處的水平距離米,那么要使飛機(jī)在垂直高度米的高空進(jìn)行空投,物資恰好準(zhǔn)確地落在居民點(diǎn)處,飛機(jī)到處的水平距離應(yīng)為________米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的對(duì)角線交于點(diǎn)O,點(diǎn)O又是正方形A1B1C1O的一個(gè)頂點(diǎn),而且這兩個(gè)正方形的邊長相等.無論正方形A1B1C1O繞點(diǎn)O怎樣轉(zhuǎn)動(dòng),兩個(gè)正方形重疊部分的面積,總等于一個(gè)正方形面積的(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案