【題目】如圖,王樂(lè)同學(xué)在晩上由路燈走向路燈.當(dāng)他行到處時(shí)發(fā)現(xiàn),他往路燈下的影長(zhǎng)為2m,且恰好位于路燈的正下方,接著他又走了處,此時(shí)他在路燈下的影孑恰好位于路燈的正下方(已知王樂(lè)身高,路燈).

1)王樂(lè)站在處時(shí),在路燈下的影子是哪條線(xiàn)段?

2)計(jì)算王樂(lè)站在處時(shí),在路燈下的影長(zhǎng);

3)計(jì)算路燈的高度.

【答案】(1)線(xiàn)段CP為王樂(lè)在路燈B下的影子;(2)王樂(lè)站在Q處時(shí),在路燈A下的影長(zhǎng)為1.5m;(3)路燈A的高度為12m

【解析】

1)影長(zhǎng)為光線(xiàn)與物高相交得到的陰影部分;
2)易得RtCEPRtCBD,利用對(duì)應(yīng)邊成比例可得QD長(zhǎng);
3)易得RtDFQRtDAC,利用對(duì)應(yīng)邊成比例可得AC長(zhǎng),也就是路燈A的高度.

解:(1)線(xiàn)段CP為王樂(lè)在路燈B下的影子.

2)由題意得Rt△CEP∽R(shí)t△CBD

解得:QD=1.5m

所以王樂(lè)站在Q處時(shí),在路燈A下的影長(zhǎng)為1.5m

3)由題意得Rt△QDF∽R(shí)t△CDA,

,

解得:AC=12m

所以路燈A的高度為12m.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的頂點(diǎn)坐標(biāo)為A(﹣2,3),B(﹣3,2),C(﹣1,1).

(1)若將ABC向右平移3個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,請(qǐng)畫(huà)出平移后的A1B1C1;

(2)畫(huà)出A1B1C1繞原點(diǎn)順時(shí)針旋90°后得到 的A2B2C2;

(3)若A′B′C′ABC是中心對(duì)稱(chēng)圖形,則對(duì)稱(chēng)中心的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)yax2+bx+c經(jīng)過(guò)點(diǎn)A(2,0)B(3,0),與y軸負(fù)半軸交于點(diǎn)C,且OCOB

1)求拋物線(xiàn)的解析式;

2)在y軸負(fù)半軸上存在一點(diǎn)D,使∠CBD=∠ADC,求點(diǎn)D的坐標(biāo);

3)點(diǎn)D關(guān)于直線(xiàn)BC的對(duì)稱(chēng)點(diǎn)為D′,將拋物線(xiàn)yax2+bx+c向下平移h個(gè)單位,與線(xiàn)段DD′只有一個(gè)交點(diǎn),直接寫(xiě)出h的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖的ABC中,ABACBC,且DBC上一點(diǎn),F(xiàn)打算在AB上找一點(diǎn)P,在AC上找一點(diǎn)Q,使得APQ與以PD、Q為頂點(diǎn)的三角形全等,以下是甲、乙兩人的作法:

甲:連接AD,作AD的中垂線(xiàn)分別交AB、ACP點(diǎn)、Q點(diǎn),則P、Q兩點(diǎn)即為所求;

乙:過(guò)D作與AC平行的直線(xiàn)交ABP點(diǎn),過(guò)D作與AB平行的直線(xiàn)交ACQ點(diǎn),則P、Q兩點(diǎn)即為所求;

對(duì)于甲、乙兩人的作法,下列判斷何者正確( 。?

A.兩人皆正確B.兩人皆錯(cuò)誤C.甲正確,乙錯(cuò)誤D.甲錯(cuò)誤,乙正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為宣傳66日世界海洋日,某校九年級(jí)舉行了主題為珍惜海洋資源,保護(hù)海洋生物多樣性的知識(shí)競(jìng)賽活動(dòng).為了解全年級(jí)500名學(xué)生此次競(jìng)賽成績(jī)(百分制)的情況,隨機(jī)抽取了部分參賽學(xué)生的成績(jī),整理并繪制出如下不完整的統(tǒng)計(jì)表(表1)和統(tǒng)計(jì)圖(如圖).請(qǐng)根據(jù)圖表信息解答以下問(wèn)題:

1)本次調(diào)查一共隨機(jī)抽取了_____個(gè)參賽學(xué)生的成績(jī);

2)表1a_____;

3)所抽取的參賽學(xué)生的成績(jī)的中位數(shù)落在的組別_____;

4)請(qǐng)你估計(jì),該校九年級(jí)競(jìng)賽成績(jī)達(dá)到80分以上(含80分)的學(xué)生約有_____人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,個(gè)全等的等腰三角形的底邊在同一條直線(xiàn)上,底角頂點(diǎn)依次重合.連接第一個(gè)三角形的底角頂點(diǎn)和第個(gè)三角形的頂角頂點(diǎn)于點(diǎn),則_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,二次函數(shù)yax23ax+c的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)c直線(xiàn)y=﹣x+4經(jīng)過(guò)點(diǎn)BC

1)求拋物線(xiàn)的表達(dá)式;

2)過(guò)點(diǎn)A的直線(xiàn)ykx+k交拋物線(xiàn)于點(diǎn)M,交直線(xiàn)BC于點(diǎn)N,連接AC,當(dāng)直線(xiàn)ykx+k平分ABC的面積,求點(diǎn)M的坐標(biāo);

3)如圖2,把拋物線(xiàn)位于x軸上方的圖象沿x軸翻折,當(dāng)直線(xiàn)ykx+k與翻折后的整個(gè)圖象只有三個(gè)交點(diǎn)時(shí),求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),過(guò)點(diǎn)軸的垂線(xiàn),垂足為.軸的垂線(xiàn),垂足為點(diǎn)出發(fā),沿軸正方向以每秒個(gè)單位長(zhǎng)度運(yùn)動(dòng);點(diǎn)出發(fā),沿軸正方向以每秒個(gè)單位長(zhǎng)度運(yùn)動(dòng);點(diǎn)出發(fā),沿方向以每秒個(gè)單位長(zhǎng)度運(yùn)動(dòng).當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),三點(diǎn)隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為.

(1)用含的代數(shù)式分別表示點(diǎn),點(diǎn)的坐標(biāo).

(2)與以點(diǎn),,為頂點(diǎn)的三角形相似,的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠(chǎng)設(shè)計(jì)了一款成本為20/件的工藝品投放市場(chǎng)進(jìn)行試銷(xiāo),經(jīng)過(guò)調(diào)查,得到如下數(shù)據(jù):

銷(xiāo)售單價(jià)(元/件)

30

40

50

60

每天銷(xiāo)售量(件)

500

400

300

200

1)研究發(fā)現(xiàn),每天銷(xiāo)售量與單價(jià)滿(mǎn)足一次函數(shù)關(guān)系,求出的關(guān)系式;

2)當(dāng)?shù)匚飪r(jià)部門(mén)規(guī)定,該工藝品銷(xiāo)售單價(jià)最高不能超過(guò)45/件,那么銷(xiāo)售單價(jià)定為多少時(shí),工藝廠(chǎng)試銷(xiāo)該工藝品每天獲得的利潤(rùn)8000元?

查看答案和解析>>

同步練習(xí)冊(cè)答案