【題目】如圖,AB為⊙O的直徑,PD切⊙O于點C,與BA的延長線交于點D,DE⊥PO交PO延長線于點E,連接PB,∠EDB=∠EPB.

(1)求證:PB是的切線;
(2)若PB=6,DB=8,求⊙O的半徑

【答案】
(1)

證明:∵在△DEO和△PBO中,∠EDB=∠EPB,∠DOE=∠POB,

∴∠OBP=∠E=90°,

∵OB為圓的半徑,

∴PB為圓O的切線.


(2)

解:在Rt△PBD中,PB=6,DB=8,

根據(jù)勾股定理得:PD==10,

∵PD與PB都為圓的切線,

∴PC=PB=6,

∴DC=PD﹣PC=10﹣6=4,

在Rt△CDO中,設OC=r,則有DO=8﹣r,

根據(jù)勾股定理得:(8﹣r)2=r2+42,

解得:r=3,

則圓的半徑為3.


【解析】(1)由已知角相等,及對頂角相等得到三角形DOE與三角形POB相似,利用相似三角形對應角相等得到∠OBP為直角,即可得證;
(2)在直角三角形PBD中,由PB與DB的長,利用勾股定理求出PD的長,由切線長定理得到PC=PB,由PD﹣PC求出CD的長,在直角三角形OCD中,設OC=r,則有OD=8﹣r,利用勾股定理列出關于r的方程,求出方程的解得到r的值,即為圓的半徑.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,過⊙O上的兩點A、B分別作切線,并交BO、AO的延長線于點C、D,連接CD,交⊙O于點E、F,過圓心O作OM⊥CD,垂足為M點.求證:

(1)△ACO≌△BDO;
(2)CE=DF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,BECD,BE=DE,BC=DA.

求證:(1)BEC≌△DAE;

(2)DFBC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解某校學生的課外閱讀情況,隨機抽查了10學生周閱讀用時數(shù),結果如下表:

周閱讀用時數(shù)(小時)

4

5

8

12

學生人數(shù)(人)

3

4

2

1

則關于這10名學生周閱讀所用時間,下列說法正確的是( 。
A.中位數(shù)是6.5
B.眾數(shù)是12
C.平均數(shù)是3.9
D.方差是6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:|﹣|﹣(﹣π)0﹣sin30°+(﹣﹣2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為2,一個銳角等于60°的菱形紙片,小芳同學將一個三角形紙片的一個頂點與該菱形頂點D重合,按順時針方向旋轉三角形紙片,使它的兩邊分別交CB、BA(或它們的延長線)于點E、F,∠EDF=60°,當CE=AF時,如圖1小芳同學得出的結論是DE=DF.

(1)繼續(xù)旋轉三角形紙片,當CE≠AF時,如圖2小芳的結論是否成立?若成立,加以證明;若不成立,請說明理由
(2)再次旋轉三角形紙片,當點E、F分別在CB、BA的延長線上時,如圖3請直接寫出DE與DF的數(shù)量關系;
(3)連EF,若△DEF的面積為y,CE=x,求y與x的關系式,并指出當x為何值時,y有最小值,最小值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】張華在一次數(shù)學活動中,利用“在面積一定的矩形中,正方形的周長最短”的結論,推導出“式子x+ (x>0)的最小值是2”.其推導方法如下:在面積是1的矩形中設矩形的一邊長為x,則另一邊長是 ,矩形的周長是2(x+ );當矩形成為正方形時,就有x= (x>0),解得x=1,這時矩形的周長2(x+ )=4最小,因此x+ (x>0)的最小值是2.模仿張華的推導,你求得式子 (x>0)的最小值是(
A.2
B.1
C.6
D.10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,AB=AC,BAC=90,直角∠EPF的頂點是BC的中點,兩邊PE,PF分別交AB,AC于點E,F(xiàn).給出以下五個結論:(1)AE=CF;(2)APE =CPF;(3)EPF是等腰直角三角形;(4)= (5)EF=AP其中一定成立的有________個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC,按下列要求作圖(第(1)、(2)小題用尺規(guī)作圖,第(3)小題不限作圖工具,保留作圖痕跡).

(1)作∠B的角平分線;

(2)作BC的中垂線;

(3)以BC邊所在直線為對稱軸,作ABC的軸對稱圖形.

查看答案和解析>>

同步練習冊答案