如圖,在平面直角坐標(biāo)系中,點(diǎn)O是原點(diǎn),矩形OABC的頂點(diǎn)A在x軸的正半軸上,頂點(diǎn)C在y的正半軸上,點(diǎn)B的坐標(biāo)是(5,3),拋物線經(jīng)過A、C兩點(diǎn),與x軸的另一個(gè)交點(diǎn)是點(diǎn)D,連接BD.

(1)求拋物線的解析式;
(2)點(diǎn)M是拋物線對稱軸上的一點(diǎn),以M、B、D為頂點(diǎn)的三角形的面積是6,求點(diǎn)M的坐標(biāo);
(3)點(diǎn)P從點(diǎn)D出發(fā),以每秒1個(gè)單位長度的速度沿D→B勻速運(yùn)動,同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位長度的速度沿B→A→D勻速運(yùn)動,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P、Q同時(shí)停止運(yùn)動,設(shè)運(yùn)動的時(shí)間為t秒,當(dāng)t為何值時(shí),以D、P、Q為頂點(diǎn)的三角形是等腰三角形?請直接寫出所有符合條件的值.
解:(1)∵矩形ABCD,B(5,3),∴A(5,0),C(0,3)。
∵點(diǎn)A(5,0),C(0,3)在拋物線上,
,解得:
∴拋物線的解析式為:。
(2)∵,
∴拋物線的對稱軸為直線x=3。
如答圖1所示,設(shè)對稱軸與BD交于點(diǎn)G,與x軸交于點(diǎn)H,則H(3,0)。

令y=0,即,解得x=1或x=5。
∴D(1,0)!郉H=2,AH=2,AD=4。
,∴GH=DH•tan∠ADB=2×=。
∴G(3,)。
∵SMBD=6,即SMDG+SMBG=6,∴MG•DH+MG•AH=6,即: MG×2+MG×2=6。
解得:MG=3。
∴點(diǎn)M的坐標(biāo)為(3,)或(3,)。
(3)在Rt△ABD中,AB=3,AD=4,則BD=5,∴sinB=,cosB=
以D、P、Q為頂點(diǎn)的三角形是等腰三角形,則:
①若PD=PQ,如答圖2所示,

此時(shí)有PD=PQ=BQ=t,過點(diǎn)Q作QE⊥BD于點(diǎn)E,
則BE=PE,BE=BQ•cosB=t,QE=BQ•sinB=t,
∴DE=t+t=t。
由勾股定理得:DQ2=DE2+QE2=AD2+AQ2,
即(t)2+(t)2=42+(3﹣t)2,整理得:11t2+6t﹣25=0,
解得:t=或t=﹣5(舍去)。
∴t=
②若PD=DQ,如答圖3所示,

此時(shí)PD=t,DQ=AB+AD﹣t=7﹣t,
∴t=7﹣t。∴t=。
③若PQ=DQ,如答圖4所示,

∵PD=t,∴BP=5﹣t。
∵DQ=7﹣t,∴PQ=7﹣t,AQ=4﹣(7﹣t)=t﹣3。
過點(diǎn)P作PF⊥AB于點(diǎn)F,
則PF=PB•sinB=(5﹣t)×=4﹣t,BF=PB•cosB=(5﹣t)×=3﹣t。
∴AF=AB﹣BF=3﹣(3﹣t)=t。
過點(diǎn)P作PE⊥AD于點(diǎn)E,則PEAF為矩形,
∴PE=AF=t,AE=PF=4﹣t!郋Q=AQ﹣AE=(t﹣3)﹣(4﹣t)=t﹣7。
在Rt△PQE中,由勾股定理得:EQ2+PE2=PQ2,即:(t﹣7)2+(t)2=(7﹣t)2,
整理得:13t2﹣56t=0,解得:t=0(舍去)或t=。
∴t=。
綜上所述,當(dāng)t=或t=或t=時(shí),以D、P、Q為頂點(diǎn)的三角形是等腰三角形。

試題分析:(1)求出點(diǎn)A、C的坐標(biāo),利用待定系數(shù)法求出拋物線的解析式。
(2)如答圖1所示,關(guān)鍵是求出MG的長度,利用面積公式解決;注意,符合條件的點(diǎn)M有2個(gè),不要漏解。
(3)△DPQ為等腰三角形,可能有三種情形,需要分類討論:
①若PD=PQ,如答圖2所示;②若PD=DQ,如答圖3所示;③若PQ=DQ,如答圖4所示。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象過A(2,0)、B(12,0),且y的最大值為50,求這個(gè)二次函數(shù)的解析式;
(2)拋物線頂點(diǎn)P(2,1),且過A(-1,10),求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

先閱讀以下材料,然后解答問題:
材料:將二次函數(shù)的圖象向左平移1個(gè)單位,再向下平移2個(gè)單位,求平移后的拋物線的解析式(平移后拋物線的形狀不變)。
解:在拋物線上任取兩點(diǎn)A(0,3)、B(1,4),由題意知:點(diǎn)A向左平移1個(gè)單位得到,3),再向下平移2個(gè)單位得到,1);點(diǎn)B向左平移1個(gè)單位得到(0,4),再向下平移2個(gè)單位得到(0,2)。
設(shè)平移后的拋物線的解析式為
則點(diǎn),1),(0,2)在拋物線上。
可得:,解得:。
所以平移后的拋物線的解析式為:
根據(jù)以上信息解答下列問題:
將直線向右平移3個(gè)單位,再向上平移1個(gè)單位,求平移后的直線的解析式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線與拋物線相交于A,B兩點(diǎn),且點(diǎn)A(1,-4)為拋物線的頂點(diǎn),點(diǎn)B在x軸上。

(1)求拋物線的解析式;
(2)在(1)中拋物線的第二象限圖象上是否存在一點(diǎn)P,使△POB與△POC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)若點(diǎn)Q是y軸上一點(diǎn),且△ABQ為直角三角形,求點(diǎn)Q的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知△ABC中,邊BC的長與BC邊上的高的和為20.
(1)寫出△ABC的面積y與BC的長x之間的函數(shù)關(guān)系式,并求出面積為48時(shí)BC的長;
(2)當(dāng)BC多長時(shí),△ABC的面積最大?最大面積是多少?
(3)當(dāng)△ABC面積最大時(shí),是否存在其周長最小的情形?如果存在,請說出理由,并求出其最小周長;如果不存在,請給予說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某公司銷售一種進(jìn)價(jià)為20元/個(gè)的計(jì)算機(jī),其銷售量y(萬個(gè))與銷售價(jià)格x(元/個(gè))的變化如下表:
價(jià)格x(元/個(gè))

30
40
50
60

銷售量y(萬個(gè))

5
4
3
2

同時(shí),銷售過程中的其他開支(不含造價(jià))總計(jì)40萬元.
(1)觀察并分析表中的y與x之間的對應(yīng)關(guān)系,用所學(xué)過的一次函數(shù),反比例函數(shù)或二次函數(shù)的有關(guān)知識寫出y(萬個(gè))與x(元/個(gè))的函數(shù)解析式.
(2)求出該公司銷售這種計(jì)算器的凈得利潤z(萬個(gè))與銷售價(jià)格x(元/個(gè))的函數(shù)解析式,銷售價(jià)格定為多少元時(shí)凈得利潤最大,最大值是多少?
(3)該公司要求凈得利潤不能低于40萬元,請寫出銷售價(jià)格x(元/個(gè))的取值范圍,若還需考慮銷售量盡可能大,銷售價(jià)格應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知以E(3,0)為圓心,以5為半徑的⊙E與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),拋物線經(jīng)過A,B,C三點(diǎn),頂點(diǎn)為F.

(1)求A,B,C三點(diǎn)的坐標(biāo);
(2)求拋物線的解析式及頂點(diǎn)F的坐標(biāo);
(3)已知M為拋物線上一動點(diǎn)(不與C點(diǎn)重合),試探究:
①使得以A,B,M為頂點(diǎn)的三角形面積與△ABC的面積相等,求所有符合條件的點(diǎn)M的坐標(biāo);
②若探究①中的M點(diǎn)位于第四象限,連接M點(diǎn)與拋物線頂點(diǎn)F,試判斷直線MF與⊙E的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線y=3x﹣3分別交x軸、y軸于A、B兩點(diǎn),拋物線y=x2+bx+c經(jīng)過A、B兩點(diǎn),點(diǎn)C是拋物線與x軸的另一個(gè)交點(diǎn)(與A點(diǎn)不重合).

(1)求拋物線的解析式;
(2)求△ABC的面積;
(3)在拋物線的對稱軸上,是否存在點(diǎn)M,使△ABM為等腰三角形?若不存在,請說明理由;若存在,求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)的圖象如圖所示,則一次函數(shù)與反比例函數(shù)在同一平面直角坐標(biāo)系中的大致圖象為【   】
 
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案