已知△ABC中,邊BC的長與BC邊上的高的和為20.
(1)寫出△ABC的面積y與BC的長x之間的函數(shù)關(guān)系式,并求出面積為48時(shí)BC的長;
(2)當(dāng)BC多長時(shí),△ABC的面積最大?最大面積是多少?
(3)當(dāng)△ABC面積最大時(shí),是否存在其周長最小的情形?如果存在,請(qǐng)說出理由,并求出其最小周長;如果不存在,請(qǐng)給予說明.
解:(1)由題意,得。
當(dāng)y=48時(shí),=48,解得:x1=12,x2=8。
∴面積為48時(shí)BC的長為12或8。
(2)∵
∴當(dāng)x=10時(shí),y最大=50。
(3)△ABC面積最大時(shí),△ABC的周長存在最小的情形。理由如下:
由(2)可知△ABC的面積最大時(shí),BC=10,BC邊上的高也為10。
過點(diǎn)A作直線L平行于BC,作點(diǎn)B關(guān)于直線L的對(duì)稱點(diǎn)B′,連接B′C 交直線L于點(diǎn)A′,連接A′B,AB′,

則由對(duì)稱性得:A′B′=A′B,AB′=AB,
∴A′B+A′C=A′B′+A′C=B′C,
當(dāng)點(diǎn)A不在線段B′C上時(shí),則由三角形三邊關(guān)系可得:
△ABC的周=AB+AC+BC=AB′+AC+BC>B′C+BC,
當(dāng)點(diǎn)A在線段B′C上時(shí),即點(diǎn)A與A′重合,這時(shí)
△ABC的周長=AB+AC+BC=A′B′+A′C+BC=B′C+BC,
因此當(dāng)點(diǎn)A與A′重合時(shí),△ABC的周長最小。
這時(shí)由作法可知:BB′=20,∴。
∴△ABC的周長= +10。
因此當(dāng)△ABC面積最大時(shí),存在其周長最小的情形,最小周長為+10。

試題分析:(1)先表示出BC邊上的高,再根據(jù)三角形的面積公式就可以表示出表示y與x之間的函數(shù)關(guān)系式,當(dāng)y=48時(shí)代入解析式就可以求出其值;
(2)將(1)的解析式轉(zhuǎn)化為頂點(diǎn)式就可以求出最大值。
(3)由(2)可知△ABC的面積最大時(shí),BC=10,BC邊上的高也為10過點(diǎn)A作直線L平行于BC,作點(diǎn)B關(guān)于直線L的對(duì)稱點(diǎn)B′,連接B′C 交直線L于點(diǎn)A′,再連接A′B,AB′,根據(jù)軸對(duì)稱的性質(zhì)及三角形的周長公式就可以求出周長的最小值。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)O是原點(diǎn),矩形OABC的頂點(diǎn)A在x軸的正半軸上,頂點(diǎn)C在y的正半軸上,點(diǎn)B的坐標(biāo)是(5,3),拋物線經(jīng)過A、C兩點(diǎn),與x軸的另一個(gè)交點(diǎn)是點(diǎn)D,連接BD.

(1)求拋物線的解析式;
(2)點(diǎn)M是拋物線對(duì)稱軸上的一點(diǎn),以M、B、D為頂點(diǎn)的三角形的面積是6,求點(diǎn)M的坐標(biāo);
(3)點(diǎn)P從點(diǎn)D出發(fā),以每秒1個(gè)單位長度的速度沿D→B勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位長度的速度沿B→A→D勻速運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P、Q同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)t為何值時(shí),以D、P、Q為頂點(diǎn)的三角形是等腰三角形?請(qǐng)直接寫出所有符合條件的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線拋物線(n為正整數(shù),且0<a1<a2<…<an)與x軸的交點(diǎn)為An-1(bn-1,0)和An(bn,0),當(dāng)n=1時(shí),第1條拋物線與x軸的交點(diǎn)為A0(0,0)和A1(b1,0),其他依此類推.
(1)求a1,b1的值及拋物線y2的解析式;
(2)拋物線y3的頂點(diǎn)坐標(biāo)為(              );
依此類推第n條拋物線yn的頂點(diǎn)坐標(biāo)為(       ,       );
所有拋物線的頂點(diǎn)坐標(biāo)滿足的函數(shù)關(guān)系是       
(3)探究下列結(jié)論:
①若用An-1An表示第n條拋物線被x軸截得得線段長,直接寫出A0A1的值,并求出An-1An
②是否存在經(jīng)過點(diǎn)A(2,0)的直線和所有拋物線都相交,且被每一條拋物線截得得線段的長度都相等?若存在,直接寫出直線的表達(dá)式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,平面之間坐標(biāo)系中,等腰直角三角形的直角邊BC在x軸正半軸上滑動(dòng),點(diǎn)C的坐標(biāo)為(t,0),直角邊AC=4,經(jīng)過O,C兩點(diǎn)做拋物線(a為常數(shù),a>0),該拋物線與斜邊AB交于點(diǎn)E,直線OA:y2=kx(k為常數(shù),k>0)

(1)填空:用含t的代數(shù)式表示點(diǎn)A的坐標(biāo)及k的值:A     ,k=     ;
(2)隨著三角板的滑動(dòng),當(dāng)a=時(shí):
①請(qǐng)你驗(yàn)證:拋物線的頂點(diǎn)在函數(shù)的圖象上;
②當(dāng)三角板滑至點(diǎn)E為AB的中點(diǎn)時(shí),求t的值;
(3)直線OA與拋物線的另一個(gè)交點(diǎn)為點(diǎn)D,當(dāng)t≤x≤t+4,|y2﹣y1|的值隨x的增大而減小,當(dāng)x≥t+4時(shí),|y2﹣y1|的值隨x的增大而增大,求a與t的關(guān)系式及t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2013年四川南充8分)如圖,二次函數(shù)y=x2+bx-3b+3的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),交y軸于點(diǎn)C,且經(jīng)過點(diǎn)(b-2,2b2-5b-1).

(1)求這條拋物線的解析式;
(2)⊙M過A、B、C三點(diǎn),交y軸于另一點(diǎn)D,求點(diǎn)M的坐標(biāo);
(3)連接AM、DM,將∠AMD繞點(diǎn)M順時(shí)針旋轉(zhuǎn),兩邊MA、MD與x軸、y軸分別交于點(diǎn)E、F,若△DMF為等腰三角形,求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如下圖是一副眼鏡鏡片下半部分輪廓對(duì)應(yīng)的兩條拋物線關(guān)于軸對(duì)稱.軸,,最低點(diǎn)軸上,高,則右輪廓線所在拋物線的函數(shù)解析式為(    )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,二次函數(shù)的圖象開口向上,對(duì)稱軸為直線x=1,圖象經(jīng)過(3,0),下列結(jié)論中,正確的一項(xiàng)是【   】
A.a(chǎn)bc<0B.2a+b<0C.a(chǎn)-b+c<0D.4ac-b2<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,∠C=90°,BC=3,AB=5.點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位長度沿B→C→A→B的方向運(yùn)動(dòng);點(diǎn)Q從點(diǎn)C出發(fā),以每秒2個(gè)單位沿C→A→B方向的運(yùn)動(dòng),到達(dá)點(diǎn)B后立即原速返回,若P、Q兩點(diǎn)同時(shí)運(yùn)動(dòng),相遇后同時(shí)停止,設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)當(dāng)t=     時(shí),點(diǎn)P與點(diǎn)Q相遇;
(2)在點(diǎn)P從點(diǎn)B到點(diǎn)C的運(yùn)動(dòng)過程中,當(dāng)ι為何值時(shí),△PCQ為等腰三角形?
(3)在點(diǎn)Q從點(diǎn)B返回點(diǎn)A的運(yùn)動(dòng)過程中,設(shè)△PCQ的面積為s平方單位.
①求s與ι之間的函數(shù)關(guān)系式;
②當(dāng)s最大時(shí),過點(diǎn)P作直線交AB于點(diǎn)D,將△ABC中沿直線PD折疊,使點(diǎn)A落在直線PC上,求折疊后的
△APD與△PCQ重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線與坐標(biāo)軸分別交于點(diǎn)A、B,與直線y=x交于點(diǎn)C.在線段OA上,動(dòng)點(diǎn)Q以每秒1個(gè)單位長度的速度從點(diǎn)O出發(fā)向點(diǎn)A做勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)A出發(fā)向點(diǎn)O做勻速運(yùn)動(dòng),當(dāng)點(diǎn)P、Q其中一點(diǎn)停止運(yùn)動(dòng)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).分別過點(diǎn)P、Q作x軸的垂線,交直線AB、OC于點(diǎn)E、F,連接EF.若運(yùn)動(dòng)時(shí)間為t秒,在運(yùn)動(dòng)過程中四邊形PEFQ總為矩形(點(diǎn)P、Q重合除外).

(1)求點(diǎn)P運(yùn)動(dòng)的速度是多少?
(2)當(dāng)t為多少秒時(shí),矩形PEFQ為正方形?
(3)當(dāng)t為多少秒時(shí),矩形PEFQ的面積S最大?并求出最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案