【題目】如圖,在平面直角坐標(biāo)系中,直線分別交x軸、y軸于點BC,正方形AOCD的頂點D在第二象限內(nèi),EBC中點,OFDE于點F,連結(jié)OE,動點PAO上從點A向終點O勻速運動,同時,動點Q在直線BC上從某點Q1向終點Q2勻速運動,它們同時到達(dá)終點.

1)求點B的坐標(biāo)和OE的長;

2)設(shè)點Q2為(m,n),當(dāng)tanEOF時,求點Q2的坐標(biāo);

3)根據(jù)(2)的條件,當(dāng)點P運動到AO中點時,點Q恰好與點C重合.

①延長AD交直線BC于點Q3,當(dāng)點Q在線段Q2Q3上時,設(shè)Q3Qs,APt,求s關(guān)于t的函數(shù)表達(dá)式.

②當(dāng)PQ與△OEF的一邊平行時,求所有滿足條件的AP的長.

【答案】1)(8,0),;(2)(6,1);(3)①,②的長為.

【解析】

1)令y0,可得B的坐標(biāo),利用勾股定理可得BC的長,即可得到OE;

2)如圖,作輔助線,證明△CDN∽△MEN,得CNMN1,計算EN的長,根據(jù)面積法可得OF的長,利用勾股定理得OF的長,由,可得結(jié)論;

3)①先設(shè)s關(guān)于t成一次函數(shù)關(guān)系,設(shè)sktb,根據(jù)當(dāng)點P運動到AO中點時,點Q恰好與點C重合,得t2時,CD4,DQ32s,根據(jù)Q346),Q261),可得t4時,s,利用待定系數(shù)法可得s關(guān)于t的函數(shù)表達(dá)式;

②分三種情況:

i)當(dāng)PQOE時,根據(jù),表示BH的長,根據(jù)AB12,列方程可得t的值;

ii)當(dāng)PQOF時,根據(jù)tanHPQtanCDN,列方程為2t2 (7t),可得t的值.

iii)由圖形可知PQ不可能與EF平行.

解:(1)令,則,

.

中,.

又∵中點,∴.

2)如圖,作于點,則,

,

,

,

.

,

由勾股定理得,

,

.

,

.

3)①∵動點同時作勻速直線運動,

關(guān)于成一次函數(shù)關(guān)系,設(shè)

代入得,解得,

.

②(ⅰ)當(dāng)時,(如圖),,

軸于點,則.

,

又∵

,

,

.

(ⅱ)當(dāng)時(如圖),過點于點,過點于點,由.

,

,

,

.

,

,

.

(ⅲ)由圖形可知不可能與平行.

綜上所述,當(dāng)的一邊平行時,的長為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC三個頂點的坐標(biāo)分別為A(2,2),B(4,0),C(4,-4).

(1)請在圖中畫出△ABC向左平移6個單位長度后得到的△A1B1C1;

(2)以點O為位似中心,將△ABC縮小為原來的,得到△A2B2C2,請在圖中y軸右側(cè)畫出△A2B2C2,;

(3)填空:△AA1A2的面積為________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,BC2AC2,點DBC的中點,點E是邊AB上一動點,沿DE所在直線把△BDE翻折到△BDE的位置,BDAB于點F.若△ABF為直角三角形,則AE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(發(fā)現(xiàn)問題)愛好數(shù)學(xué)的小明在做作業(yè)時碰到這樣的一道題目:

如圖①,點O為坐標(biāo)原點,⊙O的半徑為1,點A(2,0).動點B在⊙O上,連結(jié)AB,作等邊△ABC(A,B,C為順時針順序),求OC的最大值

(解決問題)小明經(jīng)過多次的嘗試與探索,終于得到解題思路:在圖①中,連接OB,以O(shè)B為邊在OB的左側(cè)作等邊三角形BOE,連接AE.

(1)請你找出圖中與OC相等的線段,并說明理由;

(2)求線段OC的最大值.

(靈活運用)

(3)如圖②,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(2,0),點B的坐標(biāo)為(5,0),點P為線段AB外一動點,且PA=2,PM=PB,∠BPM=90°,求線段AM長的最大值及此時點P的坐標(biāo).

(遷移拓展)

(4)如圖③,BC=4,點D是以BC為直徑的半圓上不同于B、C的一個動點,以BD為邊作等邊△ABD,請直接寫出AC的最值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“七巧板”是我們祖先的一項卓越創(chuàng)造,可以拼出許多有趣的圖形,被譽為“東方魔板”,圖①是由邊長的正方形薄板分成7塊制作成的“七巧板”圖②是用該“七巧板”拼成的一個“家”的圖形,該“七巧板”中7塊圖形之一的正方形邊長為_______(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A1、A3、A5在反比例函數(shù)y=x0)的圖象上,點A2A4、A6……在反比例函數(shù)y=-x0)的圖象上,∠OA1A2=A1A2A3=A2A3A4=…=α=60°,且OA1=2,則Ann為正整數(shù))的縱坐標(biāo)為________________________________.(用含n的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠ABC為銳角,點M為射線AB上一動點,連接CM,以點C為直角頂點,以CM為直角邊在CM右側(cè)作等腰直角三角形CMN,連接NB

1)如圖1,圖2,若△ABC為等腰直角三角形,

問題初現(xiàn):①當(dāng)點M為線段AB上不與點A重合的一個動點,則線段BN,AM之間的位置關(guān)系是   ,數(shù)量關(guān)系是   ;

深入探究:②當(dāng)點M在線段AB的延長線上時,判斷線段BN,AM之間的位置關(guān)系和數(shù)量關(guān)系,并說明理由;

2)如圖3,∠ACB≠90°,若當(dāng)點M為線段AB上不與點A重合的一個動點,MPCM交線段BN于點P,且∠CBA45°BC,當(dāng)BM   時,BP的最大值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,CGAB于點G,∠ABF45°,FCD上,BFCG于點E,連接AE,且AEAD

1)若BG2,BC,求EF的長度;

2)求證:CE+BEAB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校共有200名學(xué)生,為了解本學(xué)期學(xué)生參加公益勞動的情況,收集了他們參加公益勞動時間(單位:小時)等數(shù)據(jù),以下是根據(jù)數(shù)據(jù)繪制的統(tǒng)計圖表的一部分.

學(xué)

人數(shù)

時間

性別

7

31

25

30

4

8

29

26

32

8

學(xué)段

初中

25

36

44

11

高中

下面有四個推斷:

①這200名學(xué)生參加公益勞動時間的平均數(shù)一定在24.5-25.5之間

②這200名學(xué)生參加公益勞動時間的中位數(shù)在20-30之間

③這200名學(xué)生中的初中生參加公益勞動時間的中位數(shù)一定在20-30之間

④這200名學(xué)生中的高中生參加公益勞動時間的中位數(shù)可能在20-30之間

所有合理推斷的序號是(

A. ①③B. ②④C. ①②③D. ①②③④

查看答案和解析>>

同步練習(xí)冊答案