【題目】如圖,在Rt△ABC中,∠C=90°,BC=2,AC=2,點(diǎn)D是BC的中點(diǎn),點(diǎn)E是邊AB上一動(dòng)點(diǎn),沿DE所在直線把△BDE翻折到△B′DE的位置,B′D交AB于點(diǎn)F.若△AB′F為直角三角形,則AE的長為_____.
【答案】3或
【解析】
由∠C=90°,BC=2,AC=2可得tanB=,即∠B=30°,再根據(jù)直角三角形的性質(zhì)可得AB=2AC=4;再由翻折的性質(zhì)可得DB=DC=,EB′=EB,∠DB′E=∠B=30°;設(shè)AE=x,則BE=4﹣x,EB′=4﹣x.當(dāng)∠AFB′=90°時(shí),解直角三角形可得EF=x﹣;又由在Rt△B′EF中,∠EB′F=30°,可得EB′=2EF;再用x表示出來,然后解關(guān)于x的方程即可;②當(dāng)∠AB′F=90°時(shí),即B′不落在C點(diǎn)處時(shí),在進(jìn)行求解即可.
解:∵∠C=90°,BC=2,AC=2,
∴tanB=,
∴∠B=30°,
∴AB=2AC=4,
∵點(diǎn)D是BC的中點(diǎn),沿DE所在直線把△BDE翻折到△B′DE的位置,B′D交AB于點(diǎn)F
∴DB=DC=,EB′=EB,∠DB′E=∠B=30°,
設(shè)AE=x,則BE=4﹣x,EB′=4﹣x,
當(dāng)∠AFB′=90°時(shí),
在Rt△BDF中,cosB= ,
∴BF=cos30°=,
∴EF=﹣(4﹣x)=x﹣,
在Rt△B′EF中,∵∠EB′F=30°,
∴EB′=2EF,
即4﹣x=2(x﹣),解得x=3,此時(shí)AE為3;
②當(dāng)∠AB′F=90°時(shí),即B′不落在C點(diǎn)處時(shí),作EH⊥AB′于H,連接AD,如圖,
∵DC=DB′,AD=AD,
∴Rt△ADB′≌Rt△ADC,
∴AB′=AC=2,
∵∠AB′E=∠AB′F+∠EB′F=90°+30°=120°,
∴∠EB′H=60°,
在Rt△EHB′中,B′H=B′E=(4﹣x),EH=B′H=(4﹣x),
在Rt△AEH中,
∵EH2+AH2=AE2,
∴(4﹣x)2+[(4﹣x)+2]2=x2,解得x= ,此時(shí)AE為.
綜上所述,AE的長為3或.
故答案為3或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Q為正方形ABCD外一點(diǎn),連接BQ,過點(diǎn)D作DQ⊥BQ,垂足為Q,G、K分別為AB、BC上的點(diǎn),連接AK、DG,分別交BQ于F、E,AK⊥DG,垂足為點(diǎn)H,AF=5,DH=8,F為BQ中點(diǎn),M為對(duì)角線BD的中點(diǎn),連接HM并延長交正方形于點(diǎn)N,則HN的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,點(diǎn)D是AB的中點(diǎn),點(diǎn)P是直線BC上一點(diǎn),將△BDP沿DP所在的直線翻折后,點(diǎn)B落在B1處,若B1D⊥BC,則點(diǎn)P與點(diǎn)B之間的距離為( 。
A.1B.C.1或 3D.或5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn),,,的坐標(biāo)分別為,,,.線段,,組成的圖形為圖形,點(diǎn)沿移動(dòng),設(shè)點(diǎn)移動(dòng)的距離為,直線過點(diǎn),且在點(diǎn)移動(dòng)過程中,直線隨運(yùn)動(dòng)而運(yùn)動(dòng).
(1)若點(diǎn)過點(diǎn)時(shí),求直線的解析式;
(2)當(dāng)過點(diǎn)時(shí),求值;
(3)①若直線與圖形有一個(gè)交點(diǎn),直接寫出的取值范圍;
②若直線與圖形有兩個(gè)交點(diǎn),直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】草莓是云南多地盛產(chǎn)的一種水果,今年某水果銷售店在草莓銷售旺季試銷售成本為每千克18元的草莓,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),也不高于每千克40元.經(jīng)試銷發(fā)現(xiàn),銷售量y(kg)與銷售單價(jià)x(元/kg)符合一次函數(shù)關(guān)系,如圖是y與x的函數(shù)關(guān)系圖象.
(1)求y與x的函數(shù)解析式;
(2)設(shè)該水果銷售店試銷草莓獲得的利潤為W元,求W的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鐵嶺市某商貿(mào)公司以每千克40元的價(jià)格購進(jìn)一種干果,計(jì)劃以每千克60元的價(jià)格銷售,為了讓顧客得到更大的實(shí)惠,現(xiàn)決定降價(jià)銷售,已知這種干果銷售量y(千克)與每千克降價(jià)x(元)(0<x<20)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示:
(1)求y與x之間的函數(shù)關(guān)系式;
(2)商貿(mào)公司要想獲利2090元,則這種干果每千克應(yīng)降價(jià)多少元?
(3)該干果每千克降價(jià)多少元時(shí),商貿(mào)公司獲利最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚(yáng)中華傳統(tǒng)文化,黔南州近期舉辦了中小學(xué)生“國學(xué)經(jīng)典大賽”.比賽項(xiàng)目為:A.唐詩;B.宋詞;C.論語;D.三字經(jīng).比賽形式分“單人組”和“雙人組”.
(1)小麗參加“單人組”,她從中隨機(jī)抽取一個(gè)比賽項(xiàng)目,恰好抽中“三字經(jīng)”的概率是多少?
(2)小紅和小明組成一個(gè)小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊(duì)員的比賽項(xiàng)目不能相同,且每人只能隨機(jī)抽取一次,則恰好小紅抽中“唐詩”且小明抽中“宋詞”的概率是多少?請(qǐng)用畫樹狀圖或列表的方法進(jìn)行說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線分別交x軸、y軸于點(diǎn)B,C,正方形AOCD的頂點(diǎn)D在第二象限內(nèi),E是BC中點(diǎn),OF⊥DE于點(diǎn)F,連結(jié)OE,動(dòng)點(diǎn)P在AO上從點(diǎn)A向終點(diǎn)O勻速運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)Q在直線BC上從某點(diǎn)Q1向終點(diǎn)Q2勻速運(yùn)動(dòng),它們同時(shí)到達(dá)終點(diǎn).
(1)求點(diǎn)B的坐標(biāo)和OE的長;
(2)設(shè)點(diǎn)Q2為(m,n),當(dāng)tan∠EOF時(shí),求點(diǎn)Q2的坐標(biāo);
(3)根據(jù)(2)的條件,當(dāng)點(diǎn)P運(yùn)動(dòng)到AO中點(diǎn)時(shí),點(diǎn)Q恰好與點(diǎn)C重合.
①延長AD交直線BC于點(diǎn)Q3,當(dāng)點(diǎn)Q在線段Q2Q3上時(shí),設(shè)Q3Q=s,AP=t,求s關(guān)于t的函數(shù)表達(dá)式.
②當(dāng)PQ與△OEF的一邊平行時(shí),求所有滿足條件的AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某區(qū)初二年級(jí)數(shù)學(xué)學(xué)科期末質(zhì)量監(jiān)控情況,進(jìn)行了抽樣調(diào)查,過程如下,請(qǐng)將有關(guān)問題補(bǔ)充完整.
收集數(shù)據(jù):
隨機(jī)抽取甲乙兩所學(xué)校的 20 名學(xué)生的數(shù)學(xué)成績進(jìn)行
甲 | 91 | 89 | 77 | 86 | 71 | 31 | 97 | 93 | 72 | 91 |
81 | 92 | 85 | 85 | 95 | 88 | 88 | 90 | 44 | 91 | |
乙 | 84 | 93 | 66 | 69 | 76 | 87 | 77 | 82 | 85 | 88 |
90 | 88 | 67 | 88 | 91 | 96 | 68 | 97 | 59 | 88 |
整理、描述數(shù)據(jù) :
按如下數(shù)據(jù)段整理、描述這兩組數(shù)據(jù)
分析數(shù)據(jù) :
兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表:
a經(jīng)統(tǒng)計(jì),表格中m的值是 ___________ .
得出結(jié)論:
b若甲學(xué)校有 400 名初二學(xué)生,估計(jì)這次考試成績 80 分以上人數(shù)為____________ .
c可以推斷出 _______學(xué)校學(xué)生的數(shù)學(xué)水平較高,理由為:①__________________;②_________________.(至少從兩個(gè)不同的角度說明推斷的合理性)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com