【題目】如圖,在平面直角坐標系中,已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,兩點.
(1)求一次函數(shù)的表達式及點的坐標;
(2)點是第四象限內(nèi)反比例函數(shù)圖象上一點,過點作軸的平行線,交直線于點,連接,若,求點的坐標.
【答案】(1)y=-2x,B(2,-4);(2)或.
【解析】
(1)先求出點A的坐標,再代入一次函數(shù)即可求出一次函數(shù)表達式,由一次函數(shù)和反比例函數(shù)解析式即可求出點B的坐標;
(2)設(shè)點,m>0,表達出PC的長度,進而表達出△POC的面積,列出方程即可求出m的值.
解:(1)∵點在反比例函數(shù)圖象上,
∴,解得:a=-2,
∴,
代入得:,解得:k=-2,
∴y=-2x,
由,解得:x=2或x=-2,
∴點B(2,-4);
(2)如圖,設(shè)點,m>0
∵PC∥x軸,
∴點C的縱坐標為,則=-2x,解得:x=,
∴PC=,
∴,
解得:,(舍去),,(舍去),
∴或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,A,M,N均在格點上.在線段上有一動點B,以為直角邊在的右側(cè)作等腰直角,使,,G是一個小正方形邊的中點.
(1)當點B的位置滿足時,求此時的長_______;
(2)請用無刻度的直尺,在如圖所示的網(wǎng)格中,畫出一個點C,使其滿足線段最短,并簡要說明點C的位置是如何找到的(不要求證明)____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解不等式組:請結(jié)合題意填空,完成本題的解答:
(1)解不等式①,得: ;
(2)解不等式②得: ;
(3)把不等式①和②的解集在數(shù)軸上表示出來;
(4)原不等式組的解集為: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在6×4的方格紙ABCD中,請按要求畫格點線段(端點在格點上),且線段的端點均不與點A,B,C,D重合.
(1)在圖1中畫格點線段EF,GH各一條,使點E,F,G,H分別落在邊AB,BC,CD,DA上,且EF=GH,EF不平行GH;
(2)在圖2中畫格點線段MN,PQ各一條,使點M,N,P,Q分別落在邊AB,BC,CD,DA上,且PQ=MN.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店購進一批成本為每件40元的商品,經(jīng)調(diào)查發(fā)現(xiàn),該商品每天的銷售量(件與銷售單價(元之間滿足一次函數(shù)關(guān)系,其圖象如圖所示.
(1)求該商品每天的銷售量與銷售單價之間的函數(shù)關(guān)系式;
(2)若商店要使銷售該商品每天獲得的利潤等于1000元,每天的銷售量應(yīng)為多少件?
(3)若商店按單價不低于成本價,且不高于65元銷售,則銷售單價定為多少元時,才能使銷售該商品每天獲得的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】構(gòu)建幾何圖形解決代數(shù)問題是“數(shù)形結(jié)合”思想的重要性,在計算tan15°時,如圖.在Rt△ACB中,∠C=90°,∠ABC=30°,延長CB使BD=AB,連接AD,得∠D=15°,所以tan15°.類比這種方法,計算tan22.5°的值為( )
A.B.﹣1C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為倡導健康環(huán)保,自帶水杯已成為一種好習慣,某超市銷售甲,乙兩種型號水杯,進價和售價均保持不變,其中甲種型號水杯進價為25元/個,乙種型號水杯進價為45元/個,下表是前兩月兩種型號水杯的銷售情況:
時間 | 銷售數(shù)量(個) | 銷售收入(元)(銷售收入=售價×銷售數(shù)量) | |
甲種型號 | 乙種型號 | ||
第一月 | 22 | 8 | 1100 |
第二月 | 38 | 24 | 2460 |
(1)求甲、乙兩種型號水杯的售價;
(2)第三月超市計劃再購進甲、乙兩種型號水杯共80個,這批水杯進貨的預算成本不超過2600元,且甲種型號水杯最多購進55個,在80個水杯全部售完的情況下設(shè)購進甲種號水杯a個,利潤為w元,寫出w與a的函數(shù)關(guān)系式,并求出第三月的最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c和直線y=x+1交于A,B兩點,點A在x軸上,點B在直線x=3上,直線x=3與x軸交于點C
(1)求拋物線的解析式;
(2)點P從點A出發(fā),以每秒個單位長度的速度沿線段AB向點B運動,點Q從點C出發(fā),以每秒2個單位長度的速度沿線段CA向點A運動,點P,Q同時出發(fā),當其中一點到達終點時,另一個點也隨之停止運動,設(shè)運動時間為t秒(t>0).以PQ為邊作矩形PQNM,使點N在直線x=3上.
①當t為何值時,矩形PQNM的面積最小?并求出最小面積;
②直接寫出當t為何值時,恰好有矩形PQNM的頂點落在拋物線上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的半圓交AC于點D,交BC于點E,延長AE至點F,使EF=AE,連接FB、FC.
(1)求證:四邊形ABFC是菱形;
(2)若AD=,BE=1,求半圓的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com