【題目】某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價比乙種羽毛球每筒的售價多15元,健民體育活動中心從該網(wǎng)店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費255元.

1)該網(wǎng)店甲、乙兩種羽毛球每筒的售價各是多少元?

2)根據(jù)健民體育活動中心消費者的需求量,活動中心決定用不超過2550元錢購進甲、乙兩種羽毛球共50筒,那么最多可以購進多少筒甲種羽毛球?

【答案】1)該網(wǎng)店甲種羽毛球每筒的售價為60元,乙種羽毛球每筒的售價為45元;(2)最多可以購進20筒甲種羽毛球.

【解析】

1)設該網(wǎng)店甲種羽毛球每筒的售價為x元,乙種羽毛球每筒的售價為y元,根據(jù)甲種羽毛球每筒的售價比乙種羽毛球每筒的售價多15元,購買了2筒甲種羽毛球和3筒乙種羽毛球共花費255,即可得出關于x,y的二元一次方程組,解之即可得出結(jié)論;

2)設購進甲種羽毛球m筒,則購進乙種羽毛球(50m)筒,根據(jù)總價=單價×數(shù)量結(jié)合總費用不超過2550元,即可得出關于m的一元一次不等式,解之取其最大值即可得出結(jié)論.

1)設該網(wǎng)店甲種羽毛球每筒的售價為x元,乙種羽毛球每筒的售價為y元,

依題意,得:

解得:

答:該網(wǎng)店甲種羽毛球每筒的售價為60元,乙種羽毛球每筒的售價為45元.

2)設購進甲種羽毛球m筒,則購進乙種羽毛球(50m)筒,

依題意,得:60m+4550m≤2550,

解得:m≤20

答:最多可以購進20筒甲種羽毛球.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下面的統(tǒng)計圖表示某體校射擊隊甲、乙兩名隊員射擊比賽的成績,根據(jù)統(tǒng)計圖中的信息,下列結(jié)論正確的是(  )

A. 甲隊員成績的平均數(shù)比乙隊員的大

B. 乙隊員成績的平均數(shù)比甲隊員的大

C. 甲隊員成績的中位數(shù)比乙隊員的大

D. 甲隊員成績的方差比乙隊員的大

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某工廠與AB兩地有公路、鐵路相連.這家工廠從A地購買一批每噸1000元的原料運回工廠,制成每噸8000元的產(chǎn)品運到B.公路運價為1.5元(噸·千米),鐵路運價為1.2元(噸·千米),這兩次運輸共支出公路運費15000元,鐵路運費97200.這批產(chǎn)品的銷售款比原料費與運輸費的和多多少元?圖中黑白相間的線表示鐵路,其它線表示公路.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=90°,AB=3BC=4,DC=12,AD=13,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCACD中,∠B=D,tanB=,BC=5,CD=3,BCA=90°﹣BCD,則AD=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,.

1)用尺規(guī)作圖法作,與邊交于點(保留作題痕跡,不用寫作法);

2)在(1)的條件下,當時,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊△ABC 內(nèi)有一點D,AD=5,BD=6,CD=4,將線段AD繞點A旋轉(zhuǎn)到AE,使∠DAE=BAC,連接EC.

(1)求CE的長;

(2)求cosCDE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC的頂點A、C分別在x軸和y軸上,頂點B的坐標為(n,2),點EAB的中點,在OA上取一點D,將BAD沿BD翻折,點A剛好落在BC邊上的F處,BD、EF交于點P

1)直接寫出點E、F的坐標;

2)若OD=1,求P點的坐標;

3)動點QP點出發(fā),依次經(jīng)過F,y軸上的點Mx軸上的點N,然后返回到P點:

①若要使Q點運動一周的路徑最短,試確定M、N的位置;

②若n=3,求最短路徑的四邊形PFMN的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為鼓勵大學畢業(yè)生自主創(chuàng)業(yè),某市政府出臺了相關政策:由政府協(xié)調(diào),本市企業(yè)按成本價提供產(chǎn)品給大學畢業(yè)生自主銷售,成本價與出廠價之間的差價由政府承擔.李明按照相關政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價為每件10,出廠價為每件12,每月銷售量y(件)與銷售單價x(元)之間的關系近似滿足一次函數(shù):y=-10x+500

1)李明在開始創(chuàng)業(yè)的第一個月將銷售單價定為20,那么政府這個月為他承擔的總差價為多少元?

2設李明獲得的利潤為W(元),當銷售單價定為多少元時,每月可獲得最大利潤?

3)物價部門規(guī)定,這種節(jié)能燈的銷售單價不得高于25元.如果李明想要每月獲得的利潤不低于3000,那么政府為他承擔的總差價最少為多少元?

查看答案和解析>>

同步練習冊答案