【題目】如圖,點(diǎn)A、B在數(shù)軸上表示的數(shù)分別為﹣12和8,兩只螞蟻M、N分別從A、B兩點(diǎn)同時(shí)勻速出發(fā),同向而行
時(shí)間/秒 | 0 | 1 | 5 |
A點(diǎn)位置 | ﹣12 | ﹣9 |
|
B點(diǎn)位置 | 8 |
| 18 |
(1)請(qǐng)?zhí)顚懕砀瘢?/span>
(2)若兩只螞蟻在數(shù)軸上點(diǎn)P相遇,求點(diǎn)P在數(shù)軸上表示的數(shù);
(3)若運(yùn)動(dòng)t秒鐘時(shí),兩只螞蟻的距離為10,求出t的值.
【答案】(1)填寫表格,見解析;(2)點(diǎn)P在數(shù)軸上表示的數(shù)為48;(3)當(dāng)兩只螞蟻的距離為10,兩只螞蟻行駛的時(shí)間為10秒和30秒.
【解析】
(1)先根據(jù)表格中的數(shù)據(jù)求出兩只螞蟻的速度,再根據(jù)行駛的時(shí)間,計(jì)算出相遇的路程,填入表格即可;
(2)設(shè)相遇時(shí)間為x秒,根據(jù)螞蟻M比螞蟻N多走21個(gè)單位列方程求出時(shí)間,再根據(jù)初始位置計(jì)算出最后位置;
(3)分兩種情況進(jìn)行解答,一是在相遇之前距離為10,二是在相遇之后距離為10,列方程進(jìn)行解答即可.
(1)點(diǎn)A:(-9)-(-12)=3,3÷1=3,-9+3×(5-1)=3;
點(diǎn)B:(18-8)÷5=2,8+2=10;
時(shí)間/秒 | 0 | 1 | 5 |
A點(diǎn)位置 | ﹣12 | ﹣9 | 3 |
B點(diǎn)位置 | 8 | 10 | 18 |
(2)設(shè)相遇時(shí)間為x秒,由題意得,3x﹣2x=9﹣(﹣12),
解得:x=20,
20×3﹣12=48
答:點(diǎn)P在數(shù)軸上表示的數(shù)為48.
(3)設(shè)運(yùn)動(dòng)時(shí)間為t秒,
①在相遇之前距離為10時(shí),有3t+10﹣2t=8﹣(﹣12),解得t=10秒,
②在相遇之后距離為10時(shí),有3t﹣10﹣2t=8﹣(﹣12),解得t=30秒,
答:當(dāng)兩只螞蟻的距離為10,兩只螞蟻行駛的時(shí)間為10秒和30秒.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市設(shè)計(jì)的長(zhǎng)方形休閑廣場(chǎng)如圖所示,兩端是兩個(gè)半圓形的花壇,中間是一個(gè)直徑為長(zhǎng)方形寬度一半的圓形噴水池.
(1)用圖中所標(biāo)字母表示廣場(chǎng)空地(圖中陰影部分)的面積.
(2)若休閑廣場(chǎng)的長(zhǎng)為90米,寬為40米,求廣場(chǎng)空地的面積(計(jì)算結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方程(組)與不等式(組)是代數(shù)的重要組成部分,也是解決數(shù)學(xué)問題的重要工具,請(qǐng)利用所學(xué),解決以下 3 個(gè)問題:
(1)當(dāng) k 為何整數(shù)時(shí),關(guān)于 x , y 的方程組 的解滿足 x y 且 x y 4 ;
(2)已知正整數(shù) a ,使得關(guān)于 x , y 的方程組的解是整數(shù),解關(guān)于 x 的不等式;
(3)已知 x ,y ,z 為 3 個(gè)非負(fù)實(shí)數(shù),且滿足3x 2 y z 5 ,x y z 2 ,記 S 2x y z對(duì)于符合題意的任意實(shí)數(shù) S ,不等式 2m S 3 始終成立,試確定 m 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知點(diǎn)A(a,0),B(0,b),且a、b滿足=0, □ABCD的邊AD與y軸交于點(diǎn)E(0,2),且E為AD中點(diǎn),雙曲線經(jīng)過C、D兩點(diǎn).
(1)求k的值;
(2)點(diǎn)P在雙曲線上,點(diǎn)Q在y軸上,若以點(diǎn)A、B、P、Q為頂點(diǎn)的四邊形是平行四邊形,試求滿足要求的所有點(diǎn)P、Q的坐標(biāo);
(3)以線段AB為對(duì)角線作正方形AFBH(如圖3),點(diǎn)T是邊AF上一動(dòng)點(diǎn),M是HT的中點(diǎn),MN⊥HT,交AB于N,當(dāng)T在AF上運(yùn)動(dòng)時(shí),的值是否發(fā)生改變?若改變,求出其變化范圍;若不改變,請(qǐng)求出其值,并給出你的證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰三角形ABC中,AB=AC=10,BC=12,D為BC邊上的任意一點(diǎn),過點(diǎn)D分別作DE⊥AB,DF⊥AC,垂足分別為E,F,則DE+DF=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是中國電信兩種“4G套餐”計(jì)費(fèi)方式.(月基本費(fèi)固定收,主叫不超過主叫時(shí)間,流量不超上網(wǎng)流量不再收取額外費(fèi)用費(fèi),主叫超時(shí)和上網(wǎng)超流量部分加收超時(shí)費(fèi)和超流量費(fèi))
(1)若某月小萱主叫通話時(shí)間為220分鐘,上網(wǎng)流量為800 MB,則她按套餐1計(jì)費(fèi)需 元,按套餐2計(jì)費(fèi)需 元;若某月小花按套餐2計(jì)費(fèi)需129元,主叫通話時(shí)間為240分鐘,則上網(wǎng)流量為 MB.
(2)若上網(wǎng)流量為540 MB,是否存在某主叫通話時(shí)間t(分鐘),按套餐1和套餐2的計(jì)費(fèi)相等?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由.
(3)上網(wǎng)流量為540 MB,直接寫出當(dāng)月主叫通話時(shí)間t(分鐘)滿足什么條件時(shí),選擇套餐1省錢?當(dāng)每月主叫通話時(shí)間t(分鐘)滿足什么條件時(shí),選擇套餐2省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在紙面上有一數(shù)軸,如圖所示,點(diǎn)O為原點(diǎn),點(diǎn)A1、A2、A3、…分別表示有理數(shù)1、2、3、…,點(diǎn)B1、B2、B3、…分別表示有理數(shù)﹣1、﹣2、﹣3、….
(1)折疊紙面:
①若點(diǎn)A1與點(diǎn)B1重合,則點(diǎn)B2與點(diǎn) 重合;
②若點(diǎn)B1與點(diǎn)A2重合,則點(diǎn)A5與有理數(shù) 對(duì)應(yīng)的點(diǎn)重合;
③若點(diǎn)B1與A3重合,當(dāng)數(shù)軸上的M、N(M在N的左側(cè))兩點(diǎn)之間的距離為9,且M、N兩點(diǎn)經(jīng)折疊后重合時(shí),則M、N兩點(diǎn)表示的有理數(shù)分別是 , ;
(2)拓展思考:
點(diǎn)A在數(shù)軸上表示的有理數(shù)為a,用|a|表示點(diǎn)A到原點(diǎn)O的距離.
①|a﹣1|是表示點(diǎn)A到點(diǎn) 的距離;
②若|a﹣1|=3,則有理數(shù)a= ;
③若|a﹣1|+|a+2|=5,則有理數(shù)a= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三邊分別為a、b、c,則下列條件中不能判定△ABC是直角三角形的是( 。
A. b2=a2﹣c2B. a:b:c=1::2
C. ∠C=∠A﹣∠BD. ∠A:∠B:∠C=3:4:5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同學(xué)們都知道,表示5與之差的絕對(duì)值,實(shí)際上也可以理解為5與兩數(shù)在數(shù)軸上所對(duì)應(yīng)的兩點(diǎn)之間的距離.回答下列問題:
(1) _______.
(2)找出所有符合條件的整數(shù),使得成立,這樣的整數(shù)是______.
(3)對(duì)于任何有理數(shù),的最小值是______.
(4)對(duì)于任何有理數(shù),的最小值是_____,此時(shí)的值是______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com