【題目】已知k1<0<k2 , 則函數(shù)b=﹣1<0∴和y= 的圖象大致是( )
A.
B.
C.
D.

【答案】A
【解析】解:∵k1<0<k2,b=﹣1<0∴直線過二、三、四象限;雙曲線位于一、三象限.所以答案是:A.
【考點精析】認真審題,首先需要了解一次函數(shù)的圖象和性質(一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠),還要掌握反比例函數(shù)的圖象(反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABED,CD=BF,若要說明ABC ≌△EDF,則不能補充的條件是( 。

A.AC=EFB.AB=EDC.A=∠ED.ACEF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在一次數(shù)學興趣小組活動中,進行了如下探索活動.

問題原型:如圖(1),在矩形ABCD中,AB6AD8,PQ分別是AB、AD邊的中點,以AP、AQ為鄰邊作矩形APEQ,連接CE,則CE的長為   (直接填空)

問題變式:(1)如圖(2),小明讓矩形APEQ繞著點A逆時針旋轉至點E恰好落在AD上,連接CEDQ,請幫助小明求出CEDQ的長,并求DQCE的值.

2)如圖(3),當矩形APEQ繞著點A逆時針旋轉至如圖(3)位置時,請幫助小明判斷DQCE的值是否發(fā)生變化?若不變,說明理由.若改變,求出新的比值.

問題拓展:若將“問題原型”中的矩形ABCD改變?yōu)槠叫兴倪呅?/span>ABCD,且AB3,AD7,∠B45°,P、Q分別是AB、AD邊上的點,且APAB,AQAD,以AP、AQ為鄰邊作平行四邊形APEQ.當平行四邊形APEQ繞著點A逆時針旋轉至如圖(4)位置時,連接CE、DQ.請幫助小明求出DQCE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,點E、F分別是AB、CD上的點,DE、AF分別交BCG、H,∠A=D,∠1=2,試說明∠B=C.閱讀下面的解題過程,在橫線上補全推理過程或依據(jù).

解:∵∠1=2(已知)

1=3______________________________

∴∠2=3(等量代換)

AFDE_____________________________

4=D__________________________________

又∵∠A=D (已知)

∴∠4=A(等量代換)

__________________________________________

∴∠B=C _________________________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形中,邊的中點,連接并延長交的延長線于點,且添加一個條件使四邊形是平行四邊形,下面四個條件中可選擇的是(   。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AD平分∠BAC,DE∥AC交AB于E,DFAB交AC于F,若AF=6,則四邊形AEDF的周長是(  。

A. 24 B. 28 C. 32 D. 36

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平行四邊形中,點是對角線的中點,過點分別相交于,,過點,分別相交于點,,連接,,,.

1)求證:四邊形是平行四邊形;

2)如圖2,若,,在不添加任何輔助的情況下,請直接寫出圖2中與四邊形面積相等的所有的平行四邊形(四邊形除外).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】三角形ABC三點的坐標為A-2,1),B1,2),Ck,h

1)在直角坐標系上畫出點A,B

2)若點C-2,-1)時,求三角形ABC的面積.

3)若點Cy軸上,當三角形ABC的面積為6時,求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=﹣ x+b(b為常數(shù))的圖象與x軸交于點A(2,0),與y軸交于點B,與反比例函數(shù)y= 的圖象交于點C(﹣2,m).
(1)求點C的坐標及反比例函數(shù)的表達式;
(2)過點C的直線與y軸交于點D,且SCBD:SBOC=2:1,求點D的坐標.

查看答案和解析>>

同步練習冊答案