【題目】如圖,點E是正方形ABCD的邊BC延長線上一點,連接DE,過頂點B作BF⊥DE,垂足為F,BF分別交AC于H,交CD于G.
(1)求證:BG=DE;
(2)若點G為CD的中點,求的值;
(3)在(2)的條件下,求的值.
【答案】(1)(略);(2); (3).
【解析】試題分析:(1)由于BF⊥DE,所以∠GFD=90°,從而可知∠CBG=∠CDE,根據全等三角形的判定即可證明△BCG≌△DCE,從而可知BG=DE;
(2)由正方形的性質得到AB=DC,AB∥DC,進而得到AB=2GC,由AB∥DC得到△ABH∽△CGH,再由相似三角形的性質即可得到結論;
(3)設CG=1,從而知CG=CE=1,由勾股定理可知:DE=BG=,由易證△ABH∽△CGH,所以=2,從而可求出HG的長度,進而求出的值.
(1)∵BF⊥DE,∴∠GFD=90°,∵∠BCG=90°,∠BGC=∠DGF,∴∠CBG=∠CDE,在△BCG與△DCE中,∵∠CBG=∠CDE,BC=CD,∠BCG=∠DCE,∴△BCG≌△DCE(ASA),∴BG=DE;
(2)∵ABCD是正方形,∴AB=DC,AB∥DC,∵點G為CD的中點,∴DC=AB=2CG,∵AB∥DC,∴△ABH∽△CGH,∴AB:CG=BH:HG=2:1,∴ ;
(3)設CG=1,∵G為CD的中點,∴GD=CG=1,由(1)可知:△BCG≌△DCE(ASA),∴CG=CE=1,∴由勾股定理可知:DE=BG=,∵sin∠CDE=,∴GF=,∵AB∥CG,∴△ABH∽△CGH,∴,∴BH=,GH=,∴ =.
科目:初中數學 來源: 題型:
【題目】如圖,點P是射線BM上的一個動點(點P不與點B重合),∠AOB= 30°,∠ABM=60°.當∠OAP=______時,以點A、O、B中的任意兩點和點P為頂點的三角形是等腰三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的邊AB在x軸上,∠ABC=90°,AB=BC,OA=1,OB=4,拋物線經過A、C兩點.
(1)求拋物線的解析式及其頂點坐標;
(2)如圖①,點P是拋物線上位于x軸下方的一點,點Q與點P關于拋物線的對稱軸對稱,過點P、Q分別向x軸作垂線,垂足為點D、E,記矩形DPQE的周長為d,求d的最大值,并求出使d最大值時點P的坐標;
(3)如圖②,點M是拋物線上位于直線AC下方的一點,過點M作MF⊥AC于點F,連接MC,作MN∥BC交直線AC于點N,若MN將△MFC的面積分成2:3兩部分,請確定M點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,用三種大小不等的正方形①②③和…個缺角的正方形拼成一個長方形ABCD(不重疊且沒有縫隙),若GH=a,GK=a+1,BF=a﹣2
(1)試用含a的代數式表示:正方形②的邊長CM的長= ,正方形③的邊長DM的長= ;
(2)求長方形ABCD的周長(用含a的代數式表示);并求出當a=3時,長方形周長的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,BE平分∠ABC交AC于點E,過點E作ED∥BC交AB于點D.
(1)求證:AEBC=BDAC;
(2)如果S△ADE=3,S△BDE=2,DE=6,求BC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c交x軸于(﹣1,0)、(3,0)兩點,以下四個結論正確的是(用序號表示)______________.
(1)圖象的對稱軸是直線 x=1
(2)當x>1時,y隨x的增大而減小
(3)一元二次方程ax2+bx+c=0的兩個根是﹣1和3
(4)當﹣1<x<3時,y<0.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,O為矩形ABCD對角線的交點,DE∥AC,CE∥BD.
(1)試判斷四邊形OCED的形狀,并說明理由;
(2)若AB=3,BC=4,求四邊形OCED的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AF∥CD,CB平分∠ACD,BD平分∠EBF,且BC⊥BD,下列結論:① BC平分∠ABE;② AC∥BE;③ ∠CBE+∠D=90°;④ ∠DEB=2∠ABC.其中正確結論的個數有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經過點(1,0),對稱軸為l.則下列結論:①abc>0; ②a-b+c=0; ③2a+c<0; ④a+b<0,其中所有正確的結論是______________
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com