【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點(diǎn)在第一象限,且過點(diǎn)(0,1)和(﹣1,0),下列結(jié)論:①ab<0,②0<b<1,③0<a+b+c<2,④當(dāng)x>﹣1時,y>0.其中正確結(jié)論的個數(shù)是( )
A.1個B.2個C.3個D.4個
【答案】C
【解析】
拋物線開口方向得a<0,利用對稱軸在y軸的右側(cè)得b>0,則可對①進(jìn)行判斷;根據(jù)二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征得c=1,a﹣b+c=0,則b=a+c=a+1,所以0<b<1,于是可對②進(jìn)行判斷;由于a+b+c=a+a+1+1=2a+2,利用a<0可得a+b+c<2,再根據(jù)拋物線的對稱性得到拋物線與x軸的另一個交點(diǎn)在(1,0)和(2,0)之間,則x=1時,函數(shù)值為正數(shù),即a+b+c>0,由此可對③進(jìn)行判斷;觀察函數(shù)圖象得到x>﹣1時,拋物線有部分在x軸上方,有部分在x軸下方,則可對④進(jìn)行判斷.
解:∵由拋物線開口向下,
∴a<0,
∵對稱軸在y軸的右側(cè),
∴b>0,
∴ab<0,所以①正確;
∵點(diǎn)(0,1)和(﹣1,0)都在拋物線y=ax2+bx+c上,
∴c=1,a﹣b+c=0,
∴b=a+c=a+1,
而a<0,
∴0<b<1,所以②正確;
∵a+b+c=a+a+1+1=2a+2,
而a<0,
∴2a+2<2,即a+b+c<2,
∵拋物線與x軸的一個交點(diǎn)坐標(biāo)為(﹣1,0),而拋物線的對稱軸在y軸右側(cè),在直線x=1的左側(cè),
∴拋物線與x軸的另一個交點(diǎn)在(1,0)和(2,0)之間,
∴x=1時,y>0,即a+b+c>0,
∴0<a+b+c<2,所以③正確;
∵x>﹣1時,拋物線有部分在x軸上方,有部分在x軸下方,
∴y>0或y=0或y<0,所以④錯誤.
故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=x+3交x軸于點(diǎn)A,交y軸于點(diǎn)B,拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A,B.
(1)求拋物線解析式;
(2)點(diǎn)C(m,0)在線段OA上(點(diǎn)C不與A,O點(diǎn)重合),CD⊥OA交AB于點(diǎn)D,交拋物線于點(diǎn)E,若DE=AD,求m的值;
(3)點(diǎn)M在拋物線上,點(diǎn)N在拋物線的對稱軸上,在(2)的條件下,是否存在以點(diǎn)D,B,M,N為頂點(diǎn)的四邊形為平行四邊形?若存在,請求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】割圓術(shù)是我國古代數(shù)學(xué)家劉徽創(chuàng)造的一種求周長和面積的方法:隨著圓內(nèi)接正多邊形邊數(shù)的增加,它的周長和面積越來越接近圓周長和圓面積,“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”.劉徽就是大膽地應(yīng)用了以直代曲、無限趨近的思想方法求出了圓周率.請你也用這個方法求出二次函數(shù)的圖象與兩坐標(biāo)軸所圍成的圖形最接近的面積是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AD、BC的延長線相交于點(diǎn)E,AB、DC的延長線相交于點(diǎn)F.若∠E+∠F=80°,則∠A=____°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)在研究如何在△ABC內(nèi)做一個面積最大的正方形時,想到了可以利用位似知識解決這個問題,他的做法是:(如圖1)先在△ABC內(nèi)作一個小正方形DEFG,使得頂點(diǎn)D落在邊AB上,頂點(diǎn)E、F落在邊BC上,然后連接BG并延長交AC邊于點(diǎn)H,作HK⊥BC,HI∥BC,再作IJ⊥BC于J,則正方形HIJK就是所作的面積最大的正方形.
(1)若△ABC中,AB=4,∠ABC=60°,∠ACB=45°,請求出小明所作的面積最大的正方形的邊長.
(2)拓展運(yùn)用:
如圖2,已知∠BAC,在角的內(nèi)部有一點(diǎn)P,請畫一個⊙M,使得⊙M經(jīng)過點(diǎn)P,且與AB、AC都相切.(注:并簡要說明畫法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一粒木質(zhì)中國象棋子“兵”,它的正面雕刻一個“兵”字,它的 反面是平的.將它從一定高度下擲,落地反彈后可能是“兵”字面朝上,也可能是 “兵”面朝下.由于棋子的兩面不均勻,為了估計“兵”字面朝上的機(jī)會大小,某 實驗小組做了棋子下擲實驗,實驗數(shù)據(jù)如下表:
實驗次數(shù) | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 |
“兵”字面朝上頻數(shù) | 14 | 38 | 47 | 52 | 66 | 78 | 88 | |
“兵”字面朝上頻率 | 0.7 | 0.45 | 0.63 | 0.59 | 0.52 | 0.56 | 0.55 |
(1)請將數(shù)據(jù)表補(bǔ)充完整:
(2)在圖中畫出“兵”字面朝上的頻率分布折線圖:
(3)如果實驗繼續(xù)進(jìn)行下去,根據(jù)上表的數(shù)據(jù),這個實驗所得頻率將逐漸穩(wěn)定到某 一個數(shù)值附近,請你估計該隨機(jī)事件在每次實驗時發(fā)生的機(jī)會大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖中,,D、E為BC上兩點(diǎn),且.將繞A順時針旋轉(zhuǎn)90°得到,連接EF,下列結(jié)論:①AE平分②③④,正確的有(序號)______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在Rt△ABC中,∠C=90°,BC=1,AC=4,把邊長分別為,,,…,的n個正方形依次放入△ABC中,則第n個正方形的邊長_______________(用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是函數(shù)y=與函數(shù)y=在第一象限內(nèi)的圖象,點(diǎn)P是y=的圖象上一動點(diǎn),PA⊥x軸于點(diǎn)A,交y=的圖象于點(diǎn)C,PB⊥y軸于點(diǎn)B,交y=的圖象于點(diǎn)D.
(1)求證:D是BP的中點(diǎn);
(2)求四邊形ODPC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com